Potential increased tumor-dose delivery with combined 131I-MIBG and 90Y-DOTATOC treatment in neuroendocrine tumors: a theoretic model.

Department of Radiology, University of Iowa, 200 Hawkins Dr., Iowa City, 52242, USA.
Journal of Nuclear Medicine (Impact Factor: 5.56). 05/2006; 47(4):660-7.
Source: PubMed

ABSTRACT (131)I-Metaiodobenzylguanidine (MIBG) and (90)Y-DOTA-D-Phe1-Tyr3-octreotide (DOTATOC) have been used as radiotherapeutic agents for treating neuroendocrine tumors. The tumor dose delivered by these agents is often insufficient to control or cure the disease. However, these 2 agents used together could potentially increase tumor dose without exceeding the critical organ dose because the dose-limiting tissues are different. In this paper, we investigate the conditions in which combined-agent therapy is advantageous and we quantify the expected tumor-dose gain.
A series of equations was derived that predicted the optimal combination of agents and the fractional increase in tumor dose available from combined-agent therapy with respect to either (131)I-MIBG or (90)Y-DOTATOC. The results obtained from these derivations were compared with direct dose calculations using published dosimetric organ values for (131)I-MIBG and (90)Y-DOTATOC along with critical organ-dose limits. Tumor dose was calculated as a function of the tumor-dose ratio, defined as the (90)Y-DOTATOC tumor dose per megabecquerel divided by the (131)I-MIBG tumor dose per megabecquerel. Comparisons were made between the dose delivered to tumor with single-agent therapy and the dose delivered to tumor with combined-agent therapy as a function of the tumor-dose ratio and the fraction of activity contributed by each agent.
The dose model accurately predicted the optimal combination of agents, the range at which combined-agent therapy was advantageous, and the magnitude of the increase. For the published organ dosimetry and critical organ-dose limits, combined-agent therapy increased tumor dose when the tumor-dose ratio was greater than 0.67 and less than 5.93. The maximum combined-agent tumor-dose increase of 68% occurred for a tumor-dose ratio of 2.57, using 92% of the maximum tolerated (90)Y-DOTATOC activity supplemented with 76% of the maximum tolerated activity of (131)I-MIBG. Variations in organ dose per megabecquerel and dose-limiting values altered both the magnitude of the increase and the range at which combined-agent therapy was advantageous.
Combining (131)I-MIBG and (90)Y-DOTATOC for radiotherapy of neuroendocrine tumors can significantly increase the delivered tumor dose over the dose obtained from using either agent alone. Prior knowledge of the normal-organ and tumor dosimetry of both agents is required to determine the magnitude of the increase.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Molecular radiotherapy (MRT) with radiolabeled molecules has being constantly evolving, leading to notable results in cancer treatment. In some cases, the absorbed doses delivered to tumors by MRT are sufficient to obtain complete responses; in other cases, instead, to be effective, MRT needs to be combined with other therapeutic approaches. Recently, several studies proposed the combination of MRT with external beam radiation therapy (EBRT). Some describe the theoretical basis within radiobiological models, others report the results of clinical phase I-II studies aimed to assess the feasibility and tolerability. The latter includes the treatment of various tumors, such as meningiomas, paragangliomas, non-Hodgkin's lymphomas, bone, brain, hepatic, and breast lesions. The underlying principle of combined MRT and EBRT is the possibility of exploiting the full potential of each modality, given the different organs at risk. Target tissues can indeed receive a higher irradiation, while respecting the threshold limits of more than one critical tissue. Nevertheless, clinical trials are empirical and optimization is still a theoretical issue. This article describes the state of the art of combined MRT and EBRT regarding the rationale and the results of clinical studies, with special focus on the possibility of treatment improvement.
    Cancer Biotherapy and Radiopharmaceuticals 07/2014; DOI:10.1089/cbr.2014.1607 · 1.38 Impact Factor
  • Current problems in cancer 01/2014; 38(1):7-41. DOI:10.1016/j.currproblcancer.2014.01.001 · 7.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Combination treatment is a hallmark of cancer therapy. Although the rationale for combination radiopharmaceutical therapy was described in the mid-1990s, such treatment strategies have only been implemented clinically recently and without a rigorous methodology for treatment optimization. Radiobiologic and quantitative imaging-based dosimetry tools are now available that enable rational implementation of combined targeted radiopharmaceutical therapy. Optimal implementation should simultaneously account for radiobiologic normal-organ tolerance while optimizing the ratio of 2 different radiopharmaceuticals required to maximize tumor control. We have developed such a methodology and applied it to hypothetical myeloablative treatment of non-Hodgkin lymphoma (NHL) patients using (131)I-tositumomab and (90)Y-ibritumomab tiuxetan. The range of potential administered activities (AAs) is limited by the normal-organ maximum-tolerated biologic effective doses (MTBEDs) arising from the combined radiopharmaceuticals. Dose-limiting normal organs are expected to be the lungs for (131)I-tositumomab and the liver for (90)Y-ibritumomab tiuxetan in myeloablative NHL treatment regimens. By plotting the limiting normal-organ constraints as a function of the AAs and calculating tumor biologic effective dose (BED) along the normal-organ MTBED limits, we obtained the optimal combination of activities. The model was tested using previously acquired patient normal-organ and tumor kinetic data and MTBED values taken from the literature. The average AA value based solely on normal-organ constraints was 19.0 ± 8.2 GBq (range, 3.9-36.9 GBq) for (131)I-tositumomab and 2.77 ± 1.64 GBq (range, 0.42-7.54 GBq) for (90)Y-ibritumomab tiuxetan. Tumor BED optimization results were calculated and plotted as a function of AA for 5 different cases, established using patient normal-organ kinetics for the 2 radiopharmaceuticals. Results included AA ranges that would deliver 95% of the maximum tumor BED, allowing for informed inclusion of clinical considerations, such as a maximum-allowable (131)I administration. A rational approach for combination radiopharmaceutical treatment has been developed within the framework of a proven 3-dimensional (3D) personalized dosimetry software, 3D-RD, and applied to the myeloablative treatment of NHL. We anticipate that combined radioisotope therapy will ultimately supplant single radioisotope therapy, much as combination chemotherapy has substantially replaced single-agent chemotherapy.
    Journal of Nuclear Medicine 08/2013; 54(9). DOI:10.2967/jnumed.112.117952 · 5.56 Impact Factor

Full-text (2 Sources)

Available from
Oct 17, 2014