Article

Anterior transvertebral interbody cage with posterior transdiscal pedicle screw instrumentation for high-grade spondylolisthesis. Technical note.

Indianapolis Neurosurgical Group, Indianapolis, Indiana 46260, USA.
Neurosurgical FOCUS (Impact Factor: 2.14). 02/2006; 20(3):E7. DOI: 10.3171/foc.2006.20.3.8
Source: PubMed

ABSTRACT Adult high-grade degenerative spondylolisthesis represents the extreme end of the spectrum for spondylolisthesis and is consequently rarely encountered. Surgical management of high-grade spondylolisthesis requires constructs capable of resisting the shear forces at the slipped L5-S1 interspace. The severity of the slip, sacral inclination, and slip angle may make conventional approaches to 360 degrees fusion difficult or hazardous. Transdiscal pedicle screw fixation, transvertebral fibular graft fusion, and transvertebral cage fixation are techniques that have been developed to establish anterior column load sharing and to resist shear forces at the L5-S1 interspace, given the anatomical constraints accompanying high-grade spondylolisthesis. In this technical note the authors describe the procedure for implanting an in situ anterior L5-S1 transvertebral cage and performing L4-5 anterior lumbar interbody fusion, followed by placement of posterior S1-L5 vertebral body transdiscal pedicle screws for management of high-grade spondylolisthesis.

0 Bookmarks
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single level axial lumbar interbody fusion (AxiaLIF) using a transsacral rod through a paracoccygeal approach has been developed with promising early clinical results and biomechanical stability. Recently, the transsacral rod has been extended to perform a two-level fusion at both L4–L5 and L5–S1 levels (AxiaLIF II). No biomechanical studies have been conducted on multilevel fusion using the AxiaLIF technique. In this study, the biomechanics of L4–S1 motion segments instrumented with the AxiaLIF II transsacral rod was evaluated. Six human cadaveric lumbosacral spine segments from L4 to S1 were used (age ranges 46–74years). Unconstrained and non-destructive pure moments in axial torsion, lateral bending, and flexion extension were applied to each specimen following intact, standalone AxiaLIF II, and AxiaLIF II with two posterior fixation options: facet screws and pedicle screws with rods. Range of motion was calculated from the raw data collected with an optical motion tracking system. The two-level transsacral rod was successfully inserted in all the specimens. At L4–L5 level in axial torsion (AT) and flexion extension (FE), none of the surgical treatments showed statistically significant difference between the procedures (all P>0.05) although facet screws and pedicle screws had higher stability on average. In lateral bending (LB), the two posterior fixation techniques had significantly higher construct stability (P<0.05) than the standalone rod. No significant difference was found between facet screws and pedicle screws (P=0.821). At L5–S1 level in AT and LB, none of the surgical treatments were found to be statistically significant (all P>0.05). In FE, standalone two-level transsacral rod had significantly higher range of motion (ROM) compared with the posterior fixation techniques (P<0.05). In conclusion, the standalone rod reduced intact ROM significantly. Supplementary fixations including facet screws and pedicle screws are required to achieve higher construct stability for successful fusion. Further clinical studies are essential to evaluate the practical success of this technique.
    European Spine Journal 06/2009; 18(6):807-814. · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A retrospective study. To investigate clinical and radiological outcomes when using spinous process as a tricortical autograft for segmental spinal fusion in transforaminal lumbar interbody fusion (TLIF). Interbody spinal fusion is one of the important procedures in spinal surgery. Many types of autografts are harvested at the expense of complications. Clinical and radiographic results of patients who underwent TLIF with intraoperative harvested spinous process autograft in Prasat Neurological Institue, Bangkok, Thailand, were assessed as new technical innovation. Between October 2005 to July 2009, 30 cases of patients who underwent TLIF with spinous process tricortical autograft were included. Clinical evaluations were assessed by visual analog scales (VAS) and Prolo functional and economic scores at the preoperation and postoperation and at 2 years postoperation. Static and dynamic plain radiograph of lumbar spine were reviewed for achievement of fusion. Initial successful fusion time in lumbar interbody fusion with spinous process tricortical autograft was 4.72 months (range, 3.8-6.1 months) postoperation and 100% fusion rate was reported at 2 years. Our initial successful fusion time in lumbar interbody fusion was compared to the other types of grafts in previous literatures. The use of intraoperative harvested spinous process tricortical autograft has overcome many disadvantages of harvesting autograft with better initial successful fusion time (4.72 months). VAS and Prolo scores showed some improvement in the outcomes between the preoperative and postoperative periods.
    Asian spine journal 04/2014; 8(2):170-6.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Object Transvertebral pedicle screws have successfully been used in the treatment of high-grade L5-S1 spondylolisthesis. An advantage of transvertebral pedicle screws is the purchase of multiple cortical layers across 2 vertebrae, thereby increasing the stability of the construct. At the lumbosacral junction, transvertebral pedicle screws have been shown to be biomechanically superior to pedicle screws placed in the standard fashion. The use of transvertebral pedicle screws at spinal levels other than L5-S1 has not been reported in the literature. The authors describe their technique of transvertebral pedicle screw placement in the thoracic spine using 3D image guidance. Methods Twelve patients undergoing cervicothoracic or thoracolumbar fusion had 41 thoracic transvertebral pedicle screws placed across 26 spinal levels using this technique. Indications for placement of thoracic transvertebral pedicle screws in earlier cases included osteoporosis and pedicle screw salvage. However, in subsequent cases screws were placed in patients undergoing multilevel thoracolumbar fusion without osteoporosis, particularly near the top of the construct. Image guidance in this study was accomplished using the Medtronic StealthStation S7 image guidance system used in conjunction with the O-arm. All patients were slated to undergo postoperative CT scanning at approximately 4-6 months for fusion assessment, which also allowed for grading of the transvertebral pedicle screws. Results No thoracic transvertebral pedicle screw placed in this study had to be replaced or repositioned after intraoperative review of the cone beam CT scans. Review of the postoperative CT scans revealed all transvertebral screws to be across the superior disc space with the tips in the superior vertebral body. Six pedicle screws were placed using the in-out-in technique in patients with narrow pedicles, leaving 35 screws that underwent breach analysis. No pedicle breach was noted in 34 of 35 screws. A Grade 1 (< 2 mm) medial breach was noted in 1 screw without clinical consequence. Solid fusion was observed across 25 of 26 spinal levels that underwent transvertebral screw placement including 7 spinal levels located at the top of a multilevel construct. Conclusions This report describes the authors' initial in vivo experience with the 3D image-guided placement of 41 thoracic transvertebral pedicle screws. Advantages of thoracic transvertebral screws include the purchase of 2 vertebral segments across multiple cortical layers. A high fusion rate was observed across spinal levels in which transvertebral screws were placed. A formal biomechanical study is needed to assess the biomechanical advantages of this technique and is currently being planned.
    Journal of neurosurgery. Spine 03/2013; · 1.61 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
Jun 16, 2014