Article

Role of substance P on histamine H(3) antagonist-induced scratching behavior in mice.

Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
Journal of Pharmacological Sciences (Impact Factor: 2.11). 05/2006; 100(4):297-302.
Source: PubMed

ABSTRACT The purpose of the present study was to investigate the involvement of chemical mediators, other than histamine, in the scratching behavior induced by H(3) antagonists. Scratching behavior was induced by the histamine H(3) antagonists iodophenpropit and clobenpropit (10 nmol/site) when they were injected intradermally into the rostral part of the back of mast-cell-deficient (WBB6F1 W/W(v)) and wild-type (WBB6F1 +/+) mice. Subsequently, the effect of spantide, a tachykinin NK(1) antagonist, was measured for 60 min. The effects of the H(3) antagonists on in vitro histamine release from rat peritoneal mast cells were also investigated. When spantide was injected intradermally at a dose of 0.5 nmol/site, it significantly inhibited the response. Furthermore, iodophenpropit and clobenpropit (10(-6)-10(-8) M) did not induce histamine release in isolated rat peritoneal mast cells. Our results indicate that substance P is involved in the skin responses elicited by the histamine H(3) antagonists. Moreover, the fact that these histamine H(3) antagonists did not induce significant increases in the histamine release from rat peritoneal mast cells suggests that the histamine H(3) receptor may not be present in the peripheral cells considered in this study.

0 Bookmarks
 · 
69 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The following four possible pathways for itching sensation have been suggested by recent reports. 1) Histaminergic TRPV1-positive pathway: Although histamine-positive nerve fibers cannot strictly be classified as "itch specific" due to their excitation also by pure algogens (making them itch-selective), the existence of a subpopulation of nociceptors responsible for itching is strongly suggested. Moreover, the TRPV1-expressing neurons have been suggested to be the main sensors and mediators of itching. 2) Histaminergic TRPV1-negative pathway: The scratching behavior caused by itching was not different between capsaicin-pre-treated and vehicle-treated (control) mast cell-rich NC mice. This result suggests the existence of a capsaicin-insensitive (TRPV1-negative) histaminergic pathway. 3) Non-histaminergic PAR-2 pathway: Protease-activated receptor 2 (PAR-2) has been shown to play a role in the itching of atopic dermatitis (AD). The itch evoked by cowhage (a non-histaminergic pruritogen that activates PAR-2) is very similar in characteristics to the itch evoked by conditions such as AD. 4) Non-histaminergic serotonin (5-HT) pathway: 5-HT alone applied to the human skin evokes an itching sensation and has been suggested to be involved in the itching associated with pruritic diseases, such as polycythemia vera and cholestasis.
    Malaysian Journal of Medical Sciences 07/2013; 20(4):5-12.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Itch is a major somatic sensation, along with pain, temperature, and touch, detected and relayed by the somatosensory system. Itch can be an acute sensation, associated with mosquito bite, or a chronic condition, like atopic dermatitis (29, 59). The origins of the stimulus can be localized in the periphery or systemic, and associated with organ failure or cancer. Itch is also a perception originating in the brain. Itch is broadly characterized as either histamine-dependent (histaminergic) or histamine-independent (nonhistaminergic), both of which are relayed by subsets of C fibers and by the second-order neurons expressing gastrin-releasing peptide receptor (GRPR) and spinothalamic track (STT) neurons in the spinal cord of rodents. Historically, itch research has been primarily limited to clinical and psychophysical studies and to histamine-mediated mechanisms. In contrast, little is known about the signaling mechanisms underlying nonhistaminergic itch, despite the fact that the majority of chronic itch are mediated by nonhistaminergic mechanisms. During the past few years, important progress has been made in understanding the molecular signaling of itch, largely due to the introduction of mouse genetics. In this review, we examine some of the molecular mechanisms underlying itch sensation with an emphasis on recent studies in rodents.
    Physiology 08/2011; 26(4):286-92. DOI:10.1152/physiol.00007.2011 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various mediators are involved in the induction of itch, i.e. pruritus; however, the in vivo pharmacology of pruritus seems to be different in distinct species, and little is known about receptors that are involved in the induction of itch in dogs. The species differences in the mediation of pruritus might be explained by species differences in receptor expression in the sensory nerves, including the dorsal root ganglia (DRG). The aim of the study was to analyse the expression of receptors for various mediators of pruritus in canine DRG. Dorsal root ganglia of 14 dogs, which were euthanized for reasons not related to this study, were analysed. Multiple DRG per dog were dissected and, after homogenization of the DRG tissues, total RNA was isolated, reverse transcribed to complementary DNA and amplified with custom-synthesized primers. The following receptors were found in canine DRG: transient receptor potential cation channel subfamily V member 1, tachykinin receptor 1, Toll-like receptor 7, endothelin receptor type A, opioid receptors μ1 and κ1, histamine H1 -H4 receptors and the interleukin-31 receptor complex. PCR analysis detected bands consistent with the expression of receptors associated with pruritus in canine DRG.
    Veterinary Dermatology 12/2013; 25(1). DOI:10.1111/vde.12093 · 1.99 Impact Factor