Article

Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species.

Department of Plant Sciences, Weizman Institute of Science, Rehovot, 76100, Israel.
The Plant Cell (Impact Factor: 9.58). 06/2006; 18(5):1134-51. DOI: 10.1105/tpc.105.040725
Source: PubMed

ABSTRACT Recent studies demonstrated that pattern formation in plants involves regulation of transcription factor families by microRNAs (miRNAs). To explore the potency, autonomy, target range, and functional conservation of miRNA genes, a systematic comparison between plants ectopically expressing pre-miRNAs and plants with corresponding multiple mutant combinations of target genes was performed. We show that regulated expression of several Arabidopsis thaliana pre-miRNA genes induced a range of phenotypic alterations, the most extreme ones being a phenocopy of combined loss of their predicted target genes. This result indicates quantitative regulation by miRNA as a potential source for diversity in developmental outcomes. Remarkably, custom-made, synthetic miRNAs vectored by endogenous pre-miRNA backbones also produced phenocopies of multiple mutant combinations of genes that are not naturally regulated by miRNA. Arabidopsis-based endogenous and synthetic pre-miRNAs were also processed effectively in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). Synthetic miR-ARF targeting Auxin Response Factors 2, 3, and 4 induced dramatic transformations of abaxial tissues into adaxial ones in all three species, which could not cross graft joints. Likewise, organ-specific expression of miR165b that coregulates the PHABULOSA-like adaxial identity genes induced localized abaxial transformations. Thus, miRNAs provide a flexible, quantitative, and autonomous platform that can be employed for regulated expression of multiple related genes in diverse species.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drought is a normal and recurring climate feature in most parts of the world and plays a major role in limiting crop productivity. However, plants have their own defence systems to cope with adverse climatic conditions. One of these defence mechanisms is the reprogramming of gene expression by microRNAs (miRNAs). miRNAs are small noncoding RNAs of approximately 22 nucleotides length, which have emerged as important regulators of genes at post-transcriptional levels in a range of organisms. Some miRNAs are functionally conserved across plant species and are regulated by drought stress. These properties suggest that miRNA-based genetic modifications have the potential to enhance drought tolerance in cereal crops. This review summarizes the current understanding of the regulatory mechanisms of plant miRNAs, involvement of plant miRNAs in drought stress responses in barley (Hordeum vulgare L.), wheat (Triticum spp.) and other plant species, and the involvement of miRNAs in plant-adaptive mechanisms under drought stress. Potential strategies and directions for future miRNA research and the utilization of miRNAs in the improvement of cereal crops for drought tolerance are also discussed. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
    Plant Biotechnology Journal 01/2015; DOI:10.1111/pbi.12318 · 6.28 Impact Factor
  • Scientia Horticulturae 10/2013; 162:90-99. DOI:10.1016/j.scienta.2013.07.028 · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neofunctionalization following gene duplication is thought to be one of the key drivers in generating evolutionary novelty. A gene duplication in a common ancestor of land plants produced two classes of KNOTTED-like TALE homeobox genes, class I (KNOX1) and class II (KNOX2). KNOX1 genes are linked to tissue proliferation and maintenance of meristematic potentials of flowering plant and moss sporophytes, and modulation of KNOX1 activity is implicated in contributing to leaf shape diversity of flowering plants. While KNOX2 function has been shown to repress the gametophytic (haploid) developmental program during moss sporophyte (diploid) development, little is known about KNOX2 function in flowering plants, hindering syntheses regarding the relationship between two classes of KNOX genes in the context of land plant evolution. Arabidopsis plants harboring loss-of-function KNOX2 alleles exhibit impaired differentiation of all aerial organs and have highly complex leaves, phenocopying gain-of-function KNOX1 alleles. Conversely, gain-of-function KNOX2 alleles in conjunction with a presumptive heterodimeric BELL TALE homeobox partner suppressed SAM activity in Arabidopsis and reduced leaf complexity in the Arabidopsis relative Cardamine hirsuta, reminiscent of loss-of-function KNOX1 alleles. Little evidence was found indicative of epistasis or mutual repression between KNOX1 and KNOX2 genes. KNOX proteins heterodimerize with BELL TALE homeobox proteins to form functional complexes, and contrary to earlier reports based on in vitro and heterologous expression, we find high selectivity between KNOX and BELL partners in vivo. Thus, KNOX2 genes confer opposing activities rather than redundant roles with KNOX1 genes, and together they act to direct the development of all above-ground organs of the Arabidopsis sporophyte. We infer that following the KNOX1/KNOX2 gene duplication in an ancestor of land plants, neofunctionalization led to evolution of antagonistic biochemical activity thereby facilitating the evolution of more complex sporophyte transcriptional networks, providing plasticity for the morphological evolution of land plant body plans.
    PLoS Genetics 02/2015; 11(2):e1004980. DOI:10.1371/journal.pgen.1004980 · 8.17 Impact Factor

Full-text (2 Sources)

Download
1 Download
Available from
Feb 16, 2015