Histone modifications silence the GATA transcription factor genes in ovarian cancer

Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA.
Oncogene (Impact Factor: 8.56). 09/2006; 25(39):5446-61. DOI: 10.1038/sj.onc.1209533
Source: PubMed

ABSTRACT Altered expression of GATA factors was found and proposed as the underlying mechanism for dedifferentiation in ovarian carcinogenesis. In particular, GATA6 is lost or excluded from the nucleus in 85% of ovarian tumors and GATA4 expression is absent in majority of ovarian cancer cell lines. Here, we evaluated their DNA and histone epigenetic modifications in five ovarian epithelial and carcinoma cell lines (human 'immortalized' ovarian surface epithelium (HIO)-117, HIO-114, A2780, SKOV3 and ES2). GATA4 and GATA6 gene silencing was found to correlate with hypoacetylation of histones H3 and H4 and loss of histone H3/lysine K4 tri-methylation at their promoters in all lines. Conversely, histone H3/lysine K9 di-methylation and HP1gamma association were not observed, excluding reorganization of GATA genes into heterochromatic structures. The histone deacetylase inhibitor trichostatin A, but not the DNA methylation inhibitor 5'-aza-2'-deoxycytidine, re-established the expression of GATA4 and/or GATA6 in A2780 and HIO-114 cells, correlating with increased histone H3 and H4 acetylation, histone H3 lysine K4 methylation and DNase I sensitivity at the promoters. Therefore, altered histone modification of the promoter loci is one mechanism responsible for the silencing of GATA transcription factors and the subsequent loss of a target gene, the tumor suppressor Disabled-2, in ovarian carcinogenesis.

Download full-text


Available from: Corrado Caslini, Jun 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Introduction: GATA6 is a transcription factor which has role in the induction of cell differentiation genes and the maintenance of the differentiated state of epithelial cells. GATA6 expression is lost in neoplastic ovarian epithelia cells and in ovarian carcinoma leading to abnormal nuclear morphology characteristic of most cancer cells. We investigated the profile of GATA6 in cells collected from cervical-uterine smears (CUS) from women in the gynecologic service of three hospitals in Benin. Objective: To utilize GATA6 as molecular marker for the screening of women at risk of developing cervical carcinomas. Methods: CUS were collected from forty (40) women coming for regular checkup (a) at the National University Hospital (CNHU) in Cotonou and (b) from the local hospital of Mènontin (HZ) in Cotonou (south of Benin); (c) forty others (40) CUS were collected from women coming for treatment against HIV1 in the service of gynecology at the Departmental University Hospital (CHDU) of Borgou in Parakou (north of Benin). thus, GATA6 was analyzed in cells isolated from 80 CUS by immunoblotting techniques. Results: In women from Cotonou, GATA6 was present in 17/40 (42%) CUS, lightly expressed in 10/40 (25%) CUS and totally absent in 13/40 (32.5%) CUS. In the HIV1 infected women under treatment in Parakou, GATA6 was present in 8/40 (20%) CUS, lightly expressed in 13/40 (32.5%) and totally lost in 19/40 (47.5%) CUS. Conclusion: Our study showed that the loss of GATA6 in CUS was significantly higher in the population of women infected with HIV1 than in women from regular population in Cotonou. Thus the deficiency in GATA6 expression maybe utilized as diagnostic tools to identify women at risk for developing cervical carcinomas regardless of the infectious status before the onset of neoplasia. Keywords: GATA6, Cervical-Uterine smears, cervical carcinomas
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence shows that targeting epigenetic changes including acetylation and deacetylation of core nucleosomal histones as well as Aurora kinases hold promise for improving the treatment of human cancers including ovarian cancer. We investigated whether the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), and the Aurora kinase inhibitor VE465 can have additive or synergistic effects on gynecologic cancer cells. We tested the in vitro antitumor activity of VPA and VE465, alone and in combination, in gynecologic cancer cells and assessed potential mechanisms of action. 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) analysis revealed that 72 h of treatment with VPA or VE465 alone induced dose-dependent cytotoxic effects in nine gynecologic cancer cell lines (ovarian: 2008/C13, OVCAR3, SKOV3, and A2780; cervical: ME180 and CaSki; endometrial: HEC-1B; and uterine sarcoma: MES-SA and MES-SA/D×5). Co-treatment with VPA and VE465 enhanced cytotoxic effects on five of these cell lines: ovarian: 2008/C13, A2780, and OVCAR3; endometrial: HEC-1B; and cervical: ME180. In ovarian 2008/C13 cells, co-treatment with VPA (2 mM) and VE465 (1 μM) induced more apoptosis than either VPA or VE465 alone. Western blot analysis showed that VPA alone increased the expression of cleaved PARP and p21 in a dose-dependent manner in 2008/C13 cells, while co-treatment with VPA and VE465 induced more cleaved PARP than treatment with VPA or VE465 alone did. The combined use of VPA and VE465 enhanced cytotoxic effects in some ovarian cancer cells, via enhanced induction of apoptosis. Targeting epigenetics with the HDAC inhibitor, in combination with Aurora kinase inhibitors, holds promise for more effective therapy of ovarian cancer.
    Frontiers in Oncology 03/2013; 3:58. DOI:10.3389/fonc.2013.00058
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer is a major cause of death among gynecological cancers and its etiology is still unclear. Currently, the two principle obstacles in treating this life threatening disease are lack of effective biomarkers for early detection and drug resistance after initial chemotherapy. Similar to other cancers, the initiation and development of ovarian cancer is characterized by disruption of oncogenes and tumor suppressor genes by both genetic and epigenetic mechanisms. While it is well known that it is challenging to treat ovarian cancer through a genetic strategy due in part to its heterogeneity, the reversibility of epigenetic mechanisms involved in ovarian cancer opens exciting new avenues for treatment. The epigenomics of ovarian cancer has therefore become a rapidly expanding field leading to intense investigation. A review on the current status of the field is thus warranted. In this analysis, we will evaluate the current status of epigenomics of ovarian cancer and will include epigenetic mechanisms involved in ovarian cancer development such as DNA methylation, histone modifications, and non-coding microRNA. Development of biomarkers, the epigenetic basis for drug resistance and improved chemotherapy for ovarian cancer will also be assessed. In addition, the potential use of natural compounds as epigenetic modulators in chemotherapy shows promise in moving to the forefront of ovarian cancer treatment strategies.
    Frontiers in Genetics 10/2011; 2:67. DOI:10.3389/fgene.2011.00067