Article

Interaction of brine concentration, brine temperature, and presalting on salt penetration in Ragusano cheese.

CoRFiLaC, Regione Siciliana, 97100 Ragusa, Italy.
Journal of Dairy Science (Impact Factor: 2.57). 06/2006; 89(5):1420-38. DOI:10.3168/jds.S0022-0302(06)72211-1
Source: PubMed

ABSTRACT Thirty-one 3.6-kg blocks of Ragusano cheese were made on each of 6 different days (in different weeks) starting with a different batch of milk on each day. On d 1, 3, and 5, the cheeses were not presalted and on d 2, 4, and 6, all cheeses were presalted (PS). One of the 31 blocks of cheese was selected at random for analysis before brine salting (i.e., on d 0). The remaining 30 blocks were randomly divided into 2 groups of 15 blocks each; one group was placed in 18% brine (18%B) and the other group was placed in saturated brine (SB). For the 15 blocks within each of the 2 brine concentrations (BC), 5 blocks were placed in a brine tank at 12 degrees C, 5 at 15 degrees C, and 5 at 18 degrees C, and submerged for 24 d. The research objective was to determine the combined impacts (i.e., interactions) of PS the curd before stretching, BC (SB vs. 18%B), and brine temperature (BT; 12, 15, and 18 degrees C) on salt uptake, moisture content, and yield of Ragusano cheese. Although BC, BT, and PS each had their own separate impacts on salt uptake, there was little interaction of these effects on salt uptake when they were used in combination. The PS most quickly delivered salt to the interior of the cheese and was the most effective approach to salting for controlling early gas formation. There were strong separate impacts of BC, BT, and PS on cheese moisture content, moisture loss, and net weight loss, with BC having the largest separate impact on these parameters. Reducing BT reduced salt content and increased moisture, but the effects were small. The more important effect of reduced BT was to reduce growth of gas forming bacteria. The 18%B produced higher moisture, and less moisture and weight loss than SB. The effect of interactions of BC, BT, and PS on moisture loss and net weight loss were small. To achieve the maximum benefit from the various approaches to salting for controlling early gas formation in Ragusano cheese, PS combined with slightly lower BT (i.e., 15 degrees C instead of 18 degrees C) should be used. Although using 18%B instead of SB did increase salt uptake, the point at which improved salt uptake occurred due to use of 18%B did not provide benefit in prevention of early gas formation, as reported separately. However, use of 18%B instead of SB provided a 9.98% increase in cheese yield due to reduced moisture loss during brining; this would be very attractive to cheese makers. The increase in yield needs to be balanced against the risk of growth of undesirable bacteria in the 18%B and the creation of another cheese quality defect.

0 0
 · 
0 Bookmarks
 · 
97 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The influence of temperature (12, 15, 18, 21, and 24 degrees C) of saturated brine on salt uptake by 3.8-kg experimental blocks of Ragusano cheese during 24 d of brining was determined. Twenty-six 3.8-kg blocks were made on each of three different days. All blocks were labeled and weighed prior to brining. One block was sampled and analyzed prior to brine salting. Five blocks were placed into each of five different brine tanks at different temperatures. One block was removed from each brine tank after 1, 4, 8, 16, and 24 d of brining, weighed, sampled, and analyzed for salt and moisture content. The weight loss by blocks of cheese after 24 d of brining was higher, with increasing brine temperature, and represented the net effect of moisture loss and salt uptake. The total salt uptake and moisture loss increased with increasing brine temperature. Salt penetrates into cheese through the moisture phase within the pore structure of the cheese. Porosity of the cheese structure and viscosity of the water phase within the pores influenced the rate and extent of salt penetration during 24 d of brining. In a previous study, it was determined that salt uptake at 18 degrees C was faster in 18% brine than in saturated brine due to higher moisture and porosity of the exterior portion of the cheese. In the present study, moisture loss occurred from all cheeses at all temperatures and most of the loss was from the exterior portion of the block during the first 4 d of brining. This loss in moisture would be expected to decrease porosity of the exterior portion and act as a barrier to salt penetration. The moisture loss increased with increasing brine temperature. If this decrease in porosity was the only factor influencing salt uptake, then it would be expected that the cheeses at higher brine temperature would have had lower salt content. However, the opposite was true. Brine temperature must have also impacted the viscosity of the aqueous phase of the cheese. Cheese in lower temperature brine would be expected to have higher viscosity of the aqueous phase and slower salt uptake, even though the cheese at lower brine temperature should have had a more porous structure (favoring faster uptake) than cheese at higher brine temperature. Therefore, changing brine concentration has a greater impact on cheese porosity, while changing brine temperature has a larger impact on viscosity of the aqueous phase of the cheese within the pores in the cheese.
    Journal of Dairy Science 10/2003; 86(9):2799-812. · 2.57 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Thirty-one 3.8-kg blocks of Ragusano cheese were made on each of 6 d starting with a different batch of raw milk on each day. On d 1, 3, and 5, cheeses were not presalted and on d 2, 4, and 6, all cheeses were presalted. Before brine salting, one of the 31 blocks of cheese was selected at random for analysis (i.e., at d 0). The remaining 30 blocks were randomly divided into 2 batches of 15 blocks each, one group was placed in 18% brine, and the other group was placed in saturated brine. For the 15 blocks within each of the 2 brine concentrations, 5 blocks each were placed in brine tanks at 12, 15, and 18 degrees C. Cheese blocks were sampled immediately before brine salting (d 0) and after 1, 4, 8, 16, and 24 d of brine salting. Presalting the curd with 2% added salt before stretching reduced the coliform count in the cheese by 1.41 log and resulted in a major reduction in early gas formation. Across all treatments in the present study, the average reduction in gas formation due to presalting was 75%. Reducing brine temperature had the second largest impact on reducing gas production, but did not reduce the coliform count in the cheese. Reducing brine temperature from 18 to 12 degrees C made a larger reduction in early gas formation in cheeses that were not presalted (from 6.8 to 1.8% gas holes, respectively) than in cheeses that were presalted (from 1.9 to 0.5% gas holes, respectively). To achieve the same absolute level of gas production in the nonpre-salted cheese as was achieved in presalted cheese in combination with 18 degrees C brine, the brine temperature for the nonpresalted cheese had to be lowered from 18 to 12 degrees C. Reducing brine concentration, although effective at increasing the rate of salt penetration into the block, did not have any impact on coliform count and had minimal impact on reducing gas production. The condition where reducing brine concentration was able to make a reduction in gas production was for cheeses that were not presalted and brined at 18 degrees C. Presalting is a very simple and practical approach to reducing the problem of early gas formation in combination with strategies to improve milk quality and cheese making conditions. Further work is needed to understand the impact of different levels of presalting on death of coliforms and gas production in the cheese.
    Journal of Dairy Science 12/2004; 87(11):3648-57. · 2.57 Impact Factor

Full-text

View
48 Downloads
Available from
Jul 17, 2013