Article

Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects

Department of Materials Science and Engineering , Stanford University, Palo Alto, California, United States
Nano Letters (Impact Factor: 12.94). 05/2006; 6(4):669-76. DOI: 10.1021/nl052405t
Source: PubMed

ABSTRACT We report the in vivo targeting and imaging of tumor vasculature using arginine-glycine-aspartic acid (RGD) peptide-labeled quantum dots (QDs). Athymic nude mice bearing subcutaneous U87MG human glioblastoma tumors were administered QD705-RGD intravenously. The tumor fluorescence intensity reached maximum at 6 h postinjection with good contrast. The results reported here open up new perspectives for integrin-targeted near-infrared optical imaging and may aid in cancer detection and management including imaging-guided surgery.

1 Follower
 · 
282 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study demonstrates the effective synthesis of five different sized/shaped Pt NPs, within a narrow size regime of 1-21 nm using a modified methodology and the toxicity/biocompatibility of Pt NPs on Neuro 2A cancer cells was investigated elaborately by using light microscopic observations, tryphan blue exclusion assay, MTT assay and ICP-MS. The Pt NPs-C with sizes 5-6 nm showed superior non-cytotoxic property compared to the other four Pt NPs. These non-cytotoxic Pt NPs were employed for successful photothermal treatment of Neuro 2A cell lines using near-IR 1064 nm of laser irradiation. The Pt NPs-C could generate a 9 °C increase in temperature leading to effective photothermal killing of cancer cells. The MALDI-MS was used to prove the possibility of apoptosis related triggering of cell death in the presence of the Pt NPs. The results confirm that the current approach is an effective platform for in vivo treatment of neuro cancer cells.
    Biomaterials 04/2013; 34(23). DOI:10.1016/j.biomaterials.2013.03.077 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.
    01/2013; 2013:351031. DOI:10.1155/2013/351031
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantum dots (QDs) are utilised in imaging diagnostics, tissue engineering and medical therapeutics, however, their influence on vascular function is not ascertained. Here, we examined small mesenteric arterial responses after acute intravascular exposure to QDs. Incubation in mercaptoundecanoic acid (MUA)-coated QDs (at 15 μg/mL) had no influence on endothelial-dependent dilator responses (Acetylcholine; Ach) but led to an attenuated relaxation to the nitric oxide donor, sodium nitroprusside (SNP). Conversely, incubation in POSS-PCU coated QDs (at 15 μg/mL) led to attenuated Ach responses (10(-11)-10(-3) M; n=5, P<0.05), but had no influence on SNP-induced relaxation. At lower concentrations of POSS-PCU coated QDs (5 μg/mL), Ach responses were preserved. We demonstrate that acute exposure to QDs, can attenuate vasodilation but not vasoconstriction, and is dependent on their surface coatings. Our findings have implications in QD use for imaging diagnostics in disease states, where SNP based drugs are used in therapeutic intervention.
    Nanomedicine: nanotechnology, biology, and medicine 10/2012; 9(4). DOI:10.1016/j.nano.2012.10.004 · 5.98 Impact Factor

Preview

Download
5 Downloads
Available from