Novel Aza Peptide Inhibitors and Active-Site Probes of Papain-Family Cysteine Proteases

Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
ChemBioChem (Impact Factor: 3.09). 06/2006; 7(6):943-50. DOI: 10.1002/cbic.200600001
Source: PubMed


Recent characterization of multiple classes of functionalized azapeptides as effective covalent inhibitors of cysteine proteases prompted us to investigate O-acyl hydroxamates and their azapeptide analogues for use as activity-based probes (ABPs). We report here a new class of azaglycine-containing O-acylhydroxamates that form stable covalent adducts with target proteases. This allows them to be used as ABPs for papain family cysteine proteases. A second class of related analogues containing a novel O-acyl hydroxyurea warhead was found to function as covalent inhibitors of papain-like proteases. These inhibitors can be easily synthesized on solid support, which allows rapid optimization of compounds with improved selectivity and potency for a given target enzyme. We present here one such optimized inhibitor that showed selective inhibition of falcipain 1, a protease of the malaria-causing parasite, Plasmodium falciparum.

Download full-text


Available from: Matthew Bogyo, Oct 13, 2015
20 Reads
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteases that are expressed during the erythocytic stage of Plasmodium falciparum are newly explored drug targets for the treatment of malaria. We report here the discovery of potent inhibitors of PfA-M1, a metallo-aminopeptidase of the parasite. These compounds are based on a malonic hydroxamic template and present a very good selectivity toward neutral aminopeptidase (APN-CD13), a related protease in mammals. Structure-activity relationships in these series are described. Further optimization of the best inhibitor yielded a nanomolar, selective inhibitor of PfA-M1. This inhibitor displays good physicochemical and pharmacokinetic properties and a promising antimalarial activity.
    Journal of Medicinal Chemistry 04/2007; 50(6):1322-34. DOI:10.1021/jm061169b · 5.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aza-glycine has been incorporated into peptide mimics as a tool for studying the active conformation and characterizing structure-function relationships for activity. Side reactions, such as intramolecular cyclizations to form hydantoins and oxadiazalones, have, however, inhibited efforts to make activated aza-Gly residues in solution using carbamate protection. Herein, we describe efficient incorporation of aza-glycine into aza-peptides using diphenyl hydrazone protection. Hydrazone acylation with p-nitrobenzyl chloroformate provided the protected aza-Gly activated ester, which was used to acylate a set of amino ester and amino acids to provide aza-Gly-Xaa aza-dipeptide fragments for peptide synthesis. Removal of the hydrazone protection was performed under acidic conditions to provide the hydrochloride salt of the aza-Gly residue for subsequent elongation of the aza-peptide chain using standard coupling conditions. A proof of concept for the use of benzophenone protection has been established by the synthesis of an aza-peptide analog of a potent activator of caspase 9 in cancer cells.
    Biopolymers 01/2008; 90(6):824-31. DOI:10.1002/bip.21103 · 2.39 Impact Factor
Show more