Article

Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia.

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature reviews. Cancer (Impact Factor: 37.91). 06/2006; 6(5):347-59. DOI: 10.1038/nrc1880
Source: PubMed

ABSTRACT The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.

Download full-text

Full-text

Available from: Harald von Boehmer, Nov 12, 2014
1 Follower
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by γ-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1(IC) and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering γ-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1(IC) was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1(IC) levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.
    Journal of Experimental Medicine 06/2013; 210(7). DOI:10.1084/jem.20112615 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TCF-1 and LEF-1 transcription factors are known to play critical roles in normal thymocyte development. Unexpectedly, we found that TCF-1-deficient (Tcf7(-/-)) mice developed aggressive T cell malignancy, resembling human T cell acute lymphoblastic leukemia (T-ALL). LEF-1 was aberrantly upregulated in premalignant Tcf7(-/-) early thymocytes and lymphoma cells. We further demonstrated that TCF-1 directly repressed LEF-1 expression in early thymocytes and that conditional inactivation of Lef1 greatly delayed or prevented T cell malignancy in Tcf7(-/-) mice. In human T-ALLs, an early thymic progenitor (ETP) subtype was associated with diminished TCF7 expression, and two of the ETP-ALL cases harbored TCF7 gene deletions. We also showed that TCF-1 and LEF-1 were dispensable for T cell lineage commitment but instead were required for early thymocytes to mature beyond the CD4(-)CD8(-) stage. TCF-1 thus has dual roles, i.e., acting cooperatively with LEF-1 to promote thymocyte maturation while restraining LEF-1 expression to prevent malignant transformation of developing thymocytes.
    Immunity 10/2012; DOI:10.1016/j.immuni.2012.08.009 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Notch1 receptor plays a critical role in cell fate decisions during development. Activation of Notch signaling has been implicated in several types of cancer, particularly T-cell acute lymphoblastic leukemia (T-ALL). Consequently, several transgenic mouse strains have been made to study the role of Notch1 in T-ALL. However, the existing Notch1 transgenic lines mimic a translocation event found in only ∼1% of T-ALL cases. Here we describe three novel NOTCH1 transgenic mouse strains that have Cre-inducible expression of the entire human NOTCH1 locus, each possessing a common mutation found in T-ALL. Unlike existing Notch1 transgenic strains, these NOTCH1 transgenic strains express full-length receptors from an endogenous human promoter that should be susceptible to a number of Notch antagonists that have recently been developed. These strains will allow researchers to modulate Notch signaling to study both normal development and cancer biology.
    genesis 02/2012; 50(2):112-8. DOI:10.1002/dvg.20798 · 2.04 Impact Factor