Article

Stabilization of beta-catenin impacts pancreas growth

Department of Medicine, University of California, San Francisco, San Francisco, California, United States
Development (Impact Factor: 6.27). 06/2006; 133(10):2023-32. DOI: 10.1242/dev.02366
Source: PubMed

ABSTRACT A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.

0 Followers
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling is a well conserved pathway critical for growth, patterning and differentiation of multiple tissues and organs. Previous studies on Wnt signaling in the pancreas have been based predominantly on downstream pathway effector genes such as β-catenin. We here provide evidence that the canonical-pathway member Wnt7b is a physiological regulator of pancreatic progenitor cell growth. Genetic deletion of Wnt7b in the developing pancreas leads to pancreatic hypoplasia due to reduced proliferation of pancreatic progenitor cells during the phase of pancreas development marked by rapid progenitor cell growth. While the differentiation potential of pancreatic progenitor cells is unaffected by Wnt7b deletion, through a gain-of-function analysis, we find that early pancreatic progenitor cells are highly sensitive to Wnt7b expression, but later lose such competence. By modulating the level and the temporal windows of Wnt7b expression we demonstrate a significant impact on organ growth and morphogenesis particularly during the early branching stages of the organ, which negatively affects generation of the pro-endocrine (Ngn3+/Nkx6.1+), and pro-acinar (Ptf1A+) fields. Consequently, Wnt7b gain-of-function results in failed morphogenesis and almost complete abrogation of the differentiation of endocrine and acinar cells, leading to cystic epithelial metaplasia expressing ductal markers including Sox9, Hnf6 and Hnf1β. While Wnt7b is expressed exclusively in the developing pancreatic epithelium, adjacent mesenchymal cells in the organ display a direct trophic response to elevated Wnt7b and increase expression of Lef1, cFos and desmin. Of note, in contrast to the pancreatic epithelium, the pancreatic mesenchyme remains competent to respond to Wnt7b ligand, at later stages in development. We conclude that Wnt7b helps coordinate pancreatic development through autocrine, as well as paracrine mechanisms, and as such represents a novel bi-modal morphogen ligand.
    Developmental Biology 01/2015; 399(2). DOI:10.1016/j.ydbio.2014.12.031 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inactivating MEN1 mutations are the most common genetic defects present in sporadic and inherited pancreatic neuroendocrine tumours (PNETs). The lack of interventional therapies prompts us to explore the therapeutic approach of targeting β-catenin signalling in MEN1-mutant PNETs. Here we show the MEN1-encoded scaffold protein menin regulates phosphorylation of β-catenin. β-catenin signalling is activated in MEN1-mutant human and mouse PNETs. Conditional knockout of β-catenin suppresses the tumorigenesis and growth of Men1-deficient PNETs, and significantly prolongs the survival time in mice. Suppression of β-catenin signalling by genetic ablation or a molecular antagonist inhibits the expression of proproliferative genes in menin-null PNETs and potently improves hyperinsulinemia and hypoglycemia in mice. Blockade of β-catenin has no adverse effect on physiological function of pancreatic β-cells. Our data demonstrate that β-catenin signalling is an effective therapeutic target for MEN1-mutant PNETs. Our findings may contribute to individualized and combined medication treatment for PNETs.
    Nature Communications 12/2014; 5:5809. DOI:10.1038/ncomms6809 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-cell dysfunction in diabetes results from abnormalities of insulin production, secretion, and cell number. These abnormalities may partly arise from altered developmental programming of β-cells. Foxo1 is important to maintain adult β-cells. But little is known about its role in pancreatic progenitor cells as determinants of future β-cell function. We addressed this question by generating an allelic series of somatic Foxo1 knockouts at different stages of pancreatic development in mice. Surprisingly, ablation of Foxo1 in pancreatic progenitors resulted in delayed appearance of Neurogenin3(+) progenitors and their persistence into adulthood as a self-replicating pool, causing a 4-fold increase of β-cell mass. Similarly, Foxo1 ablation in endocrine progenitors increased their numbers, extended their survival, and expanded β-cell mass. In contrast, ablation of Foxo1 in terminally differentiated β-cells didn't increase β-cell mass nor did it affect Neurogenin3 expression. Despite the increased β-cells mass, islets from mice lacking Foxo1 in pancreatic or endocrine progenitors responded poorly to glucose, resulting in glucose intolerance. We conclude that Foxo1 integrates cues that determine developmental timing, pool size, and functional features of endocrine progenitor cells, resulting in a legacy effect on adult β-cell mass and function. Our results illustrate how developmental programming predisposes to β-cell dysfunction in adults, and raise questions on the desirability of increasing β-cell mass for therapeutic purposes in type 2 diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
    Diabetes 03/2015; DOI:10.2337/db14-1696 · 8.47 Impact Factor