Activation of the mTOR signalling pathway is required for pancreatic growth in protease-inhibitor-fed mice

Department of Molecular and Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
The Journal of Physiology (Impact Factor: 5.04). 07/2006; 573(Pt 3):775-86. DOI: 10.1113/jphysiol.2006.106914
Source: PubMed


Cholecystokinin (CCK)-induced pancreatic growth in mice involves parallel increases in DNA and protein. The mammalian target of rapamycin (mTOR) signalling pathway regulates mRNA translation and its activation is implicated in growth of various tissues. The aim of this study was to elucidate whether mTOR activation is required for pancreatic growth in a mouse model of increased endogenous CCK release. In mice fed chow containing the synthetic protease inhibitor camostat, protein synthetic rates and phosphorylation of two downstream targets of mTOR, eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and the ribosomal protein S6 (S6), increased in comparison with fasted controls. The camostat-induced increases in protein synthesis and 4E-BP1 and S6 phosphorylation were almost totally abolished by administration of the mTOR inhibitor rapamycin 1 h prior to camostat feeding. In contrast, the phosphorylation of ERK1/2 and JNK and the expression of the early response genes c-jun, c-fos, ATF3 and egr-1 induced by camostat feeding were not affected by rapamycin. In mice fed camostat for 7 days, the ratio of pancreatic to body weight increased by 143%, but when rapamycin was administered daily this was reduced to a 22% increase. Changes in pancreatic mass were paralleled by protein and DNA content following camostat feeding and rapamycin administration. Moreover, while BrdU incorporation, an indicator of DNA synthesis, was increased to 448% of control values after 2 days of camostat feeding, rapamycin administration completely inhibited this increase. We conclude that the mTOR signalling pathway is required for CCK-induced cell division and pancreatic growth.

Download full-text


Available from: Louis G D'Alecy, Sep 30, 2014
15 Reads
  • Source
    • "iologically adaptive adult growth that is largely hyperplastic with synthesis of new cells (Crozier et al., 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Elevated endogenous cholecystokinin (CCK) release induced by protease inhibitors leads to pancreatic growth. This response has been shown to be mediated by the phosphatase calcineurin, but its downstream effectors are unknown. Here we examined activation of calcineurin-regulated nuclear factor of activated T-cells (NFATs) in isolated acinar cells, as well as in an in vivo model of pancreatic growth. Western blotting of endogenous NFATs and confocal imaging of NFATc1-GFP in pancreatic acini showed that CCK dose-dependently stimulated NFAT translocation from the cytoplasm to the nucleus within 0.5-1 h. This shift in localization correlated with CCK-induced activation of NFAT-driven luciferase reporter and was similar to that induced by a calcium ionophore and constitutively active calcineurin. The effect of CCK was dependent on calcineurin, as these changes were blocked by immunosuppressants FK506 and CsA and by overexpression of the endogenous protein inhibitor CAIN. Parallel NFAT activation took place in vivo. Pancreatic growth was accompanied by an increase in nuclear NFATs and subsequent elevation in expression of NFAT-luciferase in the pancreas, but not in organs unresponsive to CCK. The changes also required calcineurin, as they were blocked by FK506. We conclude that CCK activates NFATs in a calcineurin-dependent manner, both in vitro and in vivo.
    Molecular biology of the cell 02/2008; 19(1):198-206. DOI:10.1091/mbc.E07-05-0430 · 4.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous CCK release induced by a synthetic trypsin inhibitor, camostat, stimulates pancreatic growth; however, the mechanisms mediating this growth are not well established. Early response genes often couple short-term signals with long-term responses. To study their participation in the pancreatic growth response, mice were fasted for 18 h and refed chow containing 0.1% camostat for 1-24 h. Expression of 18 early response genes were evaluated by quantitative PCR; mRNA for 17 of the 18 increased at 1, 2, 4, or 8 h. Protein expression for c-jun, c-fos, ATF-3, Egr-1, and JunB peaked at 2 h. Nuclear localization was confirmed by immunohistochemistry of c-fos, c-jun, and Egr-1. Refeeding regular chow induced only a small increase of c-jun and none in c-fos expression. JNKs and ERKs were activated 1 h after camostat feeding as was the phosphorylation of c-jun and ATF-2. AP-1 DNA binding evaluated by EMSA showed a significant increase 1-2 h after camostat feeding with participation of c-jun, c-fos, ATF-2, ATF-3, and JunB shown by supershift. The CCK antagonist IQM-95,333 blocked camostat feeding-induced c-jun and c-fos expression by 67 and 84%, respectively, and AP-1 DNA binding was also inhibited. In CCK-deficient mice, the maximal response of c-jun induction and AP-1 DNA binding were reduced by 64 and 70%, respectively. These results indicate that camostat feeding induces a spectrum of early response gene expression and AP-1 DNA binding and that these effects are mainly CCK dependent.
    AJP Gastrointestinal and Liver Physiology 03/2007; 292(2):G667-77. DOI:10.1152/ajpgi.00433.2006 · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Luminal nutrients are essential for the growth and maintenance of digestive tissue including the pancreas and small intestinal mucosa. Long-term loss of luminal nutrients such as during animal hibernation has been shown to result in mucosal atrophy and a corresponding stress response characterized by the induction of heat shock protein (Hsp)70 expression. This study was conducted to determine if the loss of luminal nutrients during total parenteral nutrition (TPN) would result in atrophy of the exocrine pancreas and small intestinal mucosa as well as an induction of Hsp70 expression in rats. In experiment 1, the treatment groups included an orally fed control, a saline-infused surgical control, or TPN treatment for 7 days. In experiment 2, the treatment groups included an orally fed control and TPN alone or coinfused with varying doses of glucagon-like peptide (GLP)-2, a mucosal proliferation agent, for 7 days. In experiment 1, TPN resulted in a 40% reduction in pancreatic mass that was associated with a dramatic reduction in digestive enzyme expression, enhanced apoptosis, and a 200% increase in Hsp70 expression. Conversely, heat shock cognate 70, Hsp27, and Hsp60 expression was not changed in the pancreas. In experiment 2, TPN resulted in a 30% reduction in jejunal mucosa mass and a similar induction of Hsp70 expression. The inclusion of GLP-2 during TPN attenuated jejunal mucosal atrophy and inhibited Hsp70 expression, suggesting that Hsp70 induction is sensitive to cell growth. These data indicate that pancreatic and intestinal mucosal atrophy caused by a loss of luminal nutrient stimulation is accompanied by a compensatory response involving Hsp70.
    AJP Gastrointestinal and Liver Physiology 04/2007; 292(3):G857-66. DOI:10.1152/ajpgi.00467.2006 · 3.80 Impact Factor
Show more