Article

Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation.

Instituto de Neurociencias de Alicante, CSIC & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
Cell (Impact Factor: 33.12). 05/2006; 125(1):127-42. DOI: 10.1016/j.cell.2006.01.042
Source: PubMed

ABSTRACT Neuronal migration and axon guidance constitute fundamental processes in brain development that are generally studied independently. Although both share common mechanisms of cell biology and biochemistry, little is known about their coordinated integration in the formation of neural circuits. Here we show that the development of the thalamocortical projection, one of the most prominent tracts in the mammalian brain, depends on the early tangential migration of a population of neurons derived from the ventral telencephalon. This tangential migration contributes to the establishment of a permissive corridor that is essential for thalamocortical axon pathfinding. Our results also demonstrate that in this process two different products of the Neuregulin-1 gene, CRD-NRG1 and Ig-NRG1, mediate the guidance of thalamocortical axons. These results show that neuronal tangential migration constitutes a novel mechanism to control the timely arrangement of guidance cues required for axonal tract formation in the mammalian brain.

1 Follower
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The essential micronutrient manganese is enriched in brain, especially the basal ganglia. We sought to identify neuronal signaling pathways responsive to neurologically relevant manganese levels, as previous data suggested alterations in striatal manganese handling occur in Huntington's disease (HD) models. We found that p53 phosphorylation at serine 15 is the most responsive cell signaling event to manganese exposure (of 18 tested) in human neuroprogenitors and a mouse striatal cell line. Manganese-dependent activation of p53 was severely diminished in HD cells. Inhibitors of Ataxia Telangiectasia Mutated (ATM) kinase decreased manganese-dependent phosphorylation of p53. Likewise, analysis of additional ATM kinase targets, H2AX, CHK2, and ATM autophosphorylation support a role for ATM in the activation of p53 by manganese and that a defect in this process occurs in HD. Furthermore, the deficit in Mn-dependent activation of ATM kinase in HD neuroprogenitors was highly selective, as DNA damage and oxidati
    Human Molecular Genetics 12/2014; DOI:10.1093/hmg/ddu609 · 6.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult brain, active stem cells are a subset of astrocytes residing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Whether quiescent neuronal progenitors occur in other brain regions is unclear. Here, we describe a novel neurogenic system in the external capsule and lateral striatum (EC-LS) of the juvenile guinea pig that is quiescent at birth but becomes active around weaning. Activation of neurogenesis in this region was accompanied by the emergence of a neurogenic-like niche in the ventral EC characterized by chains of neuroblasts, intermediate-like progenitors and glial cells expressing markers of immature astrocytes. Like neurogenic astrocytes of the SVZ and DG, these latter cells showed a slow rate of proliferation and retained BrdU labeling for up to 65 days, suggesting that they are the primary progenitors of the EC-LS neurogenic system. Injections of GFP-tagged lentiviral vectors into the SVZ and the EC-LS of newborn animals confirmed that new LS neuroblasts originate from the activation of local progenitors and further supported their astroglial nature. Newborn EC-LS neurons existed transiently and did not contribute to neuronal addition or replacement. Nevertheless, they expressed Sp8 and showed strong tropism for white matter tracts, wherein they acquired complex morphologies. For these reasons, we propose that EC-LS neuroblasts represent a novel striatal cell type, possibly related to those populations of transient interneurons that regulate the development of fiber tracts during embryonic life.
    Development 11/2014; 141(21). DOI:10.1242/dev.107987 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1(-/-), CR3(-/-), and DAP12(-/-) mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.
    Cell Reports 09/2014; 8(5). DOI:10.1016/j.celrep.2014.07.042 · 7.21 Impact Factor