Targeted deletion of FATP5 reveals multiple functions in liver metabolism: Alterations in hepatic lipid Homeostasis

Stanford University, Palo Alto, California, United States
Gastroenterology (Impact Factor: 13.93). 05/2006; 130(4):1245-58. DOI: 10.1053/j.gastro.2006.02.006
Source: PubMed

ABSTRACT Fatty acid transport protein 5 (FATP5/Slc27a5) has been shown to be a multifunctional protein that in vitro increases both uptake of fluorescently labeled long-chain fatty acid (LCFA) analogues and bile acid/coenzyme A ligase activity on overexpression. The aim of this study was to further investigate the diverse roles of FATP5 in vivo.
We studied FATP5 expression and localization in liver of C57BL/6 mice in detail. Furthermore, we created a FATP5 knockout mouse model and characterized changes in hepatic lipid metabolism (this report) and bile metabolism (the accompanying report by Hubbard et al).
FATP5 is exclusively expressed by the liver and localized to the basal plasma membrane of hepatocytes, congruent with a role in LCFA uptake from the circulation. Overexpression of FATP5 in mammalian cells increased the uptake of 14C-oleate. Conversely, FATP5 deletion significantly reduced LCFA uptake by hepatocytes isolated from FATP5 knockout animals. Moreover, FATP5 deletion resulted in lower hepatic triglyceride and free fatty acid content despite increased expression of fatty acid synthetase and also caused a redistribution of lipids from liver to other LCFA-metabolizing tissues. Detailed analysis of the hepatic lipom of FATP5 knockout livers showed quantitative and qualitative alterations in line with a decreased uptake of dietary LCFAs and increased de novo synthesis.
Our findings support the hypothesis that efficient hepatocellular uptake of LCFAs, and thus liver lipid homeostasis in general, is largely a protein-mediated process requiring FATP5. These new insights into the physiological role of FATP5 should lead to an improved understanding of liver function and disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evidences suggest that omega-3 fatty acid (n-3 PUFA) metabolism is imbalanced in apolipoprotein E epsilon 4 isoform carriers (APOE4). This study aimed to investigate APOE genotype-dependant modulation of FA profiles, protein and enzyme important to fatty acid (FA) metabolism in the adipose tissue, the liver and the plasma using human APOE-targeted replacement mouse-model (N=37). FA transport (FATP) and binding (FABP) protein levels in tissues and concentrations of liver carnitine palmitoyltransferase 1 (CPT1) were performed. N-3 PUFA concentration was >45% lower in the adipose tissue and liver of APOE4 mice compared to APOE3 mice. In APOE4 mice, there were higher levels of FATP and FABP in the liver and higher FATP in the adipose tissue compared to APOE2 mice. There was a trend towards higher CPT1 concentrations in APOE4 mice compared to APOE3 mice. Therefore, since APOE-isoform differences were not always in line with the unbalanced n-3 PUFA profiles in organs, other proteins may be involved in maintaining n-3 PUFA homeostasis in mice with different APOE-isoforms.
    Prostaglandins Leukotrienes and Essential Fatty Acids 09/2014; 91(6). DOI:10.1016/j.plefa.2014.09.007 · 1.98 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tomato products are a dietary source of natural antioxidants, especially lycopene, which accumulates in the liver, where it exerts biological effects. Taking into consideration this fact, the aim of the present study was to ascertain the effect of tomato consumption on biomarkers and gene expression related to lipid metabolism in rats with induced steatosis. Adult male Sprague–Dawley rats (8 weeks old) were randomly grouped (n = 6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high fat diet and water) and HL (high fat diet and tomato juice). After 7 weeks, rats were euthanized, and plasma, urine, feces and liver were sampled to analyze the biomarkers related to lipid metabolism, inflammation and oxidative stress. The H diet induced steatosis (grade II) in the HA and HL groups, which was confirmed by the levels of alanine aminotransferase and aspartate aminotransferase, histological examination and the presence of dyslipidemia. The intake of tomato juice led to an accumulation of all-E and Z-lycopene and its metabolites in the livers of these animals; levels were higher in HL than in NL, apparently due to higher absorption (63.07 vs. 44.45 %). A significant improvement in the plasma level of high-density lipoprotein was observed in the HL group compared with HA animals, as was an alleviation of oxidative stress through reduction of isoprostanes in the urine. In relation to fatty acid gene expression, an overexpression of several genes related to fatty acid transport, lipid hydrolysis and mitochondrial and peroxisomal β-fatty acid oxidation was observed in the HL group. The consumption of tomato juice and tomato products reduced hallmarks of steatosis, plasmatic triglycerides and very low-density lipoproteins, and increased lipid metabolism by inducing an overexpression of genes involved in more efficient fatty acid oxidation.
    European Journal of Nutrition 09/2014; DOI:10.1007/s00394-014-0770-4 · 3.84 Impact Factor


1 Download
Available from