Article

Determination of tobramycin in human serum by capillary electrophoresis with contactless conductivity detection.

Department of Chemistry, National University of Singapore, Republic of Singapore.
Electrophoresis (Impact Factor: 3.26). 06/2006; 27(10):1932-8. DOI: 10.1002/elps.200500819
Source: PubMed

ABSTRACT A study on the determination of the antibiotic tobramycin by CE with capacitively coupled contactless conductivity detection is presented. This method enabled the direct quantification of the non-UV-absorbing species without incurring the disadvantages of the indirect approaches which would be needed for optical detection. The separation of tobramycin from inorganic cations present in serum samples was achieved by optimizing the composition of the acetic acid buffer. Field-amplified sample stacking was employed to enhance the sensitivity of the method and a detection limit of 50 microg/L (S/N = 3) was reached. The RSDs obtained for migration time and peak area using kanamycin B as internal standard were typically 0.12 and 4%, respectively. The newly developed method was validated by measuring the concentration of tobramycin in serum standards containing typical therapeutic concentrations of 2 and 10 mg/L. The recoveries were 96 and 97% for the two concentrations, respectively.

1 Bookmark
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An RNA aptamer is proposed as a recognition element for the detection of tobramycin in human serum. A displacement assay was developed using faradaic-electrochemical impedance spectroscopy (F-EIS) as a detection technique. Two modified aptamers, a partially (ATA) and a fully O-methylated aptamer (FATA) were evaluated and compared. The affinity constant, K(D), for both aptamers was estimated by F-EIS resulting virtually identical within the experimental error. The selectivity towards other aminoglycosides was also studied. The analytical characteristics were evaluated in aqueous solution using both aptamers and FATA was selected for human serum experiments. Using a 1:0.5 dilution of the serum, a linear range between 3 μM and 72.1 μM was obtained, which included the therapeutic range of the antibiotic.
    Biosensors & Bioelectronics 10/2010; 26(5):2354-60. · 6.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell culture has replaced many in vivo studies because of ethical and regulatory measures as well as the possibility of increased throughput. Analytical assays to determine (bio)chemical changes are often based on end-point measurements rather than on a series of sequential determinations. The purpose of this work is to develop an analytical system for monitoring cell culture based on sequential injection-capillary electrophoresis (SI-CE) with capacitively coupled contactless conductivity detection (C(4)D). The system was applied for monitoring lactate production, an important metabolic indicator, during mammalian cell culture. Using a background electrolyte consisting of 25mM tris(hydroxymethyl)aminomethane, 35mM cyclohexyl-2-aminoethanesulfonic acid with 0.02% poly(ethyleneimine) (PEI) at pH 8.65 and a multilayer polymer coated capillary, lactate could be resolved from other compounds present in media with relative standard deviations 0.07% for intraday electrophoretic mobility and an analysis time of less than 10min. Using the human embryonic kidney cell line HEK293, lactate concentrations in the cell culture medium were measured every 20min over 3 days, requiring only 8.73μL of sample per run. Combining simplicity, portability, automation, high sample throughput, low limits of detection, low sample consumption and the ability to up- and outscale, this new methodology represents a promising technique for near real-time monitoring of chemical changes in diverse cell culture applications.
    Journal of Chromatography A 11/2013; · 4.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method was validated and optimized to determine tobramycin (TOB) and its related substances. TOB is an aminoglycoside antibiotic which lacks a strong UV absorbing chromophore or fluorophore. Due to the physicochemical properties of TOB, capillary electrophoresis (CE) in combination with Capacitively Coupled Contactless Conductivity Detection (C(4)D) was chosen. The optimized separation method uses a background electrolyte (BGE) composed of 25 mM morpholinoethane-sulphonic acid (MES) adjusted to pH 6.4 by L-histidine (l-His). 0.3 mM cetyltrimethyl ammonium bromide (CTAB) was added as electroosmotic flow modifier in a concentration below the critical micellar concentration (CMC). Ammonium acetate 50 mg L(-1) was used as internal standard (IS). 30 kV was applied in reverse polarity (cathode at the injection capillary end) on a fused silica capillary (65/43 cm; 75 μm id). The optimized separation was obtained in less than 7 min with good linearity (R(2)=0.9995) for tobramycin. It shows a good precision expressed as RSD on relative peak areas equal to 0.2% and 0.7% for intraday and interday respectively. The LOD and LOQ are 0.4 and 1.3 mg L(-1) corresponding to 9 pg and 31 pg respectively.
    Journal of pharmaceutical and biomedical analysis 01/2012; 58:49-57. · 2.45 Impact Factor