Article

Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis.

Department of Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
The Journal of Infectious Diseases (Impact Factor: 5.85). 06/2006; 193(10):1419-26. DOI: 10.1086/503363
Source: PubMed

ABSTRACT Interleukin (IL)-1 alpha and IL-1 beta are protective proinflammatory cytokines involved in host defense against Candida albicans. It is, however, unknown whether they provide protection through similar mechanisms. We investigated the effect of endogenous IL-1 alpha and IL-1 beta on disseminated C. albicans infection.
Mice deficient in the genes encoding IL-1 alpha (IL-1 alpha-/-), IL-1 beta (IL-1 beta-/-), or both molecules (IL-1 alpha-/- beta-/-) were used. Survival and C. albicans outgrowth in the kidneys was assessed after intravenous injection of C. albicans.
Both mortality and C. albicans outgrowth in the kidneys were significantly increased in IL-1 alpha-/- and IL-1 beta-/- mice, compared with those in control mice, with the IL-1 alpha-/- beta-/- mice being most susceptible to disseminated candidiasis. The host defense mechanisms triggered by IL-1 alpha and IL-1 beta differed from one another. IL-1 beta-/- mice showed decreased recruitment of granulocytes in response to an intraperitoneal C. albicans challenge, and generation of superoxide production was diminished in IL-1 beta-/- granulocytes. IL-1 alpha-/- mice had a reduced capacity to damage C. albicans pseudohyphae. Protective type 1 responses were deficient in both IL-1 alpha-/- and IL-1 beta-/- mice, as assessed by production of interferon-gamma by splenocytes in response to heat-killed C. albicans.
Although IL-1 alpha and IL-1 beta have differential effects on the various arms of host defense, both cytokines are essential for mounting a protective host response against invasive C. albicans infection.

0 Bookmarks
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of "alarmins" and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance.
    Frontiers in Microbiology 01/2011; 2:15. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Candida albicans causes mucosal and disseminated candidiasis, which represent serious problems for the rapidly expanding immunocompromised population. Until recently, Th1-mediated immunity was thought to confer the primary protection, particularly for oral candidiasis. However, emerging data indicate that the newly-defined Th17 compartment appears to play the predominant role in mucosal candidiasis.
    Microbes and Infection 04/2010; 12(7):518-27. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type I interferon (IFN) is a common therapy for autoimmune and inflammatory disorders, yet the mechanisms of action are largely unknown. Here we showed that type I IFN inhibited interleukin-1 (IL-1) production through two distinct mechanisms. Type I IFN signaling, via the STAT1 transcription factor, repressed the activity of the NLRP1 and NLRP3 inflammasomes, thereby suppressing caspase-1-dependent IL-1β maturation. In addition, type I IFN induced IL-10 in a STAT1-dependent manner; autocrine IL-10 then signaled via STAT3 to reduce the abundance of pro-IL-1α and pro-IL-1β. In vivo, poly(I:C)-induced type I IFN diminished IL-1β production in response to alum and Candida albicans, thus increasing susceptibility to this fungal pathogen. Importantly, monocytes from multiple sclerosis patients undergoing IFN-β treatment produced substantially less IL-1β than monocytes derived from healthy donors. Our findings may thus explain the effectiveness of type I IFN in the treatment of inflammatory diseases but also the observed "weakening" of the immune system after viral infection.
    Immunity 02/2011; 34(2):213-23. · 19.80 Impact Factor