Article

A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit.

Department of Microbiology, University of Washington, Seattle 98195-7242, USA.
Journal of Bacteriology (Impact Factor: 3.19). 06/2006; 188(9):3365-70. DOI: 10.1128/JB.188.9.3365-3370.2006
Source: PubMed

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons.

0 Bookmarks
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators' responses to distinct environmental signals.
    mBio 01/2014; 5(5). · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.
    PLoS ONE 01/2014; 9(1):e87862. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Pseudomonas aeruginosa, the production of many secreted virulence factors is controlled by a quorum-sensing (QS) circuit, constituted of transcriptional activators (LasR, RhlR, PqsR) and their cognate signaling molecules (3-oxo-C12-HSL, C4-HSL, PQS). QS is a cooperative behavior that is beneficial to a population but can be exploited by "QS-cheaters", individuals which do not respond to the QS-signal, but can use public goods produced by QS-cooperators. In order to identify QS-deficient clones we designed a genetic screening based on a lasB-lacZ fusion. We isolated one clone (PT1617) deficient in QS-dependent gene expression and virulence factor production despite wild type lasR, rhlR and pqsR alleles. Whole genome sequencing of PT1617 revealed a 3,552 bp deletion encompassing ORFs PA2228-PA2229-PA2230 and the pslA gene. However, complementation of PT1617 by plasmid-encoded copies of these ORFs, did not restore QS. Unexpectedly, gene expression levels of ORFs PA2228, PA2227 (vqsM) and PA2222, located adjacent to the deletion, were 10 to 100 fold higher in mutant PT1617 than in PAO1. When expressed from a constitutive promoter on a plasmid, PA2226, alone was found to be sufficient to confer a QS-negative phenotype on PAO1 as well as on PA14. Co-expression of PA2226 and PA2225 in PAO1 further prevented induction of the type III secretion system. In summary, we have identified a novel genetic locus including ORF2226 termed qsrO (QS-repressing ORF), capable of down-regulating all three known QS-systems in P. aeruginosa.
    PLoS ONE 01/2014; 9(2):e87814. · 3.73 Impact Factor

Full-text

View
0 Downloads
Available from