ATP Binding to a Unique Site in the Type-1 S2- Inositol 1,4,5-Trisphosphate Receptor Defines Susceptibility to Phosphorylation by Protein Kinase A

Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 07/2006; 281(25):17410-9. DOI: 10.1074/jbc.M601340200
Source: PubMed


The subtype- and splice variant-specific modulation of inositol 1,4,5-trisphosphate receptors (InsP3R) by interaction with cellular factors plays a fundamental role in defining the characteristics of Ca2+ release in individual cell types. In this study, we investigate the binding properties and functional consequences of the
expression of a putative nucleotide binding fold (referred to as the ATPC site) unique to the S2- splice variant of the type-1 InsP3R (InsP3R-1), the predominant splice variant in peripheral tissue. A glutathione S-transferase fusion protein encompassing amino acids 1574-1765 of the S2- InsP3R-1 and including the glycine-rich motif Gly-Tyr-Gly-Glu-Lys-Gly bound ATP specifically as measured by fluorescent trinitrophenyl-ATP
binding. This binding was completely abrogated by a point mutation (G1690A) in the nucleotide binding fold. The functional
sensitivity of S2- InsP3R-1 constructs was evaluated in DT40-3KO-M3 cells, a null background for InsP3R, engineered to express muscarinic M3 receptors. The S2- InsP3R-1 containing the G1690A mutation was markedly less sensitive to agonist stimulation than wild type S2- InsP3R-1 or receptors containing a similar (Gly → Ala) mutation in the established nucleotide binding sites in InsP3R-1 (the ATPA and ATPB sites). The ATP sensitivity of InsP3-induced Ca2+ release, however, was not altered by the G1690A mutation when measured in permeabilized DT40-3KO cells, suggesting a unique
role for the ATPC site. Ca2+ release was dramatically potentiated following activation of cAMP-dependent protein kinase in DT40-3KO cells transiently
expressing wild type S2- InsP3R or Gly → Ala mutations in the ATPA and ATPB sites, but phosphorylation of the receptor and the potentiation of Ca2+ release were absent in cells expressing the G1690A mutation in S2- InsP3R. These data indicate that ATP binding specifically to the ATPC site in S2- InsP3R-1 controls the susceptibility of the receptor to protein kinase A-mediated phosphorylation, contributes to the functional
sensitivity of the S2- InsP3R-1 and ultimately the sensitivity of cells to agonist stimulation.

6 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
    Physiological Reviews 05/2007; 87(2):593-658. DOI:10.1152/physrev.00035.2006 · 27.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bcl-2 family members are important regulators of cell survival and cell death. Researchers have focused mainly on mitochondria, where both proapoptotic and antiapoptotic family members function to regulate the release of cytochrome c and other mediators of apoptosis. However, as reviewed here, Bcl-2 family members also operate on another front, the endoplasmic reticulum (ER), to both positively and negatively regulate the release of Ca2+. There is abundant evidence that Ca2+ signals trigger apoptosis in response to a wide variety of agents and conditions. Conversely, Ca2+ signals can also mediate cell survival. Recent findings indicate that Bcl-2 interacts with inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ channels on the ER, regulating their opening in response to IP3- and thus inhibiting IP3-mediated Ca2+ signals that induce apoptosis while enhancing Ca2+ signals that support cell survival.
    Annual Review of Physiology 02/2008; 70(1):73-91. DOI:10.1146/annurev.physiol.70.021507.105852 · 18.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Imbalance of signals that control cell survival and death results in pathologies, including cancer and neurodegeneration. Two pathways that are integral to setting the balance between cell survival and cell death are controlled by lipid-activated protein kinase B (PKB)/Akt and Ca(2+). PKB elicits its effects through the phosphorylation and inactivation of proapoptotic factors. Ca(2+) stimulates many prodeath pathways, among which is mitochondrial permeability transition. We identified Ca(2+) release through inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular channels as a prosurvival target of PKB. We demonstrated that in response to survival signals, PKB interacts with and phosphorylates InsP(3)Rs, significantly reducing their Ca(2+) release activity. Moreover, phosphorylation of InsP(3)Rs by PKB reduced cellular sensitivity to apoptotic stimuli through a mechanism that involved diminished Ca(2+) flux from the endoplasmic reticulum to the mitochondria. In glioblastoma cells that exhibit hyperactive PKB, the same prosurvival effect of PKB on InsP(3)R was found to be responsible for the insensitivity of these cells to apoptotic stimuli. We propose that PKB-mediated abolition of InsP(3)-induced Ca(2+) release may afford tumor cells a survival advantage.
    Proceedings of the National Academy of Sciences 03/2008; 105(7):2427-32. DOI:10.1073/pnas.0711324105 · 9.67 Impact Factor
Show more

Similar Publications

Preview (2 Sources)

6 Reads
Available from