MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides.

Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
DNA Repair (Impact Factor: 3.36). 08/2006; 5(7):761-72. DOI: 10.1016/j.dnarep.2006.03.003
Source: PubMed

ABSTRACT In human and rodent cells, MTH1, an oxidized purine nucleoside triphosphatase, efficiently hydrolyzes oxidized dGTP, GTP, dATP and ATP such as 2'-deoxy-8-oxoguanosine triphosphate (8-oxo-dGTP) and 2'-deoxy-2-hydroxyadenosine triphosphate (2-OH-dATP) in nucleotide pools, thus avoiding their incorporation into DNA or RNA. MTH1 is expressed in postmitotic neurons as well as in proliferative tissues, and it is localized both in the mitochondria and nucleus, thus suggesting that MTH1 plays an important role in the prevention of the mutagenicity and cytotoxicity of such oxidized purines as 8-oxoG which are known to accumulate in the cellular genome. Our recent studies with MTH1-deficient mice or cells revealed that MTH1 efficiently minimizes accumulation of 8-oxoG in both nuclear and mitochondrial DNA in the mouse brain as well as in cultured cells, thus contributing to the protection of the brain from oxidative stress.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p53-regulated caspase-independent cell death has been implicated in suppression of tumorigenesis, however, the regulating mechanisms are poorly understood. We previously reported that 8-oxoguanine (8-oxoG) accumulation in nuclear DNA (nDNA) and mitochondrial DNA triggers two distinct caspase-independent cell death through buildup of single-strand DNA breaks by MutY homolog (MUTYH), an adenine DNA glycosylase. One pathway depends on poly-ADP-ribose polymerase (PARP) and the other depends on calpains. Deficiency of MUTYH causes MUTYH-associated familial adenomatous polyposis. MUTYH thereby suppresses tumorigenesis not only by avoiding mutagenesis, but also by inducing cell death. Here, we identified the functional p53-binding site in the human MUTYH gene and demonstrated that MUTYH is transcriptionally regulated by p53, especially in the p53/DNA mismatch repair enzyme, MLH1-proficient colorectal cancer-derived HCT116+Chr3 cells. MUTYH-small interfering RNA, an inhibitor for p53 or PARP suppressed cell death without an additive effect, thus revealing that MUTYH is a potential mediator of p53 tumor suppression, which is known to be upregulated by MLH1. Moreover, we found that the p53-proficient, mismatch repair protein, MLH1-proficient colorectal cancer cell line express substantial levels of MUTYH in nuclei but not in mitochondria, suggesting that 8-oxoG accumulation in nDNA triggers MLH1/PARP-dependent cell death. These results provide new insights on the molecular mechanism of tumorigenesis and potential new strategies for cancer therapies.
    Oncogenesis. 10/2014; 3:e121.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modified nucleotide base 7,8-dihydro-8-oxo-guanine (8-oxo-G) is one of the major sources of spontaneous mutagenesis. Nucleotide-sanitizing enzymes, such as the MutT homolog-1 (MTH1) and nudix-type motif 5 (NUDT5), selectively remove 8-oxo-G from the cellular pool of nucleotides. Previous studies showed that, although the syn conformation generally predominates in purine nucleotides with a bulky substituent at the 8-position, 8-oxo-dGMP binds to both MTH1 and NUDT5 in the anti conformation. This study was initiated to investigate the possibility that 8-oxo-dGMP itself may adopt the anti conformation. Molecular dynamics simulations of mononucleotides (dGMP, 8-oxo-dGMP) in aqueous solution were performed. 8-oxo-dGMP adopted the anti conformation as well as the syn conformation, and the proportion of adopting the anti conformation increased in the presence of metal ions. When 8-oxo-dGMP was in the anti conformation, a metal ion was located between the oxygen atom of phosphate and the oxygen atom at the 8-position of 8-oxo-G. The types of stable anti conformations of 8-oxo-dGMP differed, depending on the ionic radii and charges of coexisting ions. These data suggested a role for metal ions, other than as cofactors for the hydrolysis of the di- and tri-phosphate forms of mononucleotides; that the metal ions help retain the anti conformation of the N-glycosidic torsion angle of 8-oxo-dGMP to promote the binding between the 8-oxo-G deoxynucleotide and the nucleotide-sanitizing enzymes.
    Journal of Molecular Graphics and Modelling 06/2014; 51C:158-167. · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the potential compensatory effects of hOGG1 and hMTH1 in the repair of oxidative DNA damage.
    Toxicology Letters 08/2014; · 3.36 Impact Factor