High incidence of hyperoxaluria in generalized peroxisomal disorders

Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
Molecular Genetics and Metabolism (Impact Factor: 2.63). 09/2006; 88(4):346-50. DOI: 10.1016/j.ymgme.2006.03.004
Source: PubMed


The Zellweger spectrum disorders (ZSDs) are characterized by a generalized loss of peroxisomal functions caused by deficient peroxisomal assembly. Clinical presentation and survival are heterogeneous. Although most peroxisomal enzymes are unstable in the cytosol of peroxisome-deficient cells of ZSD patients, a few enzymes remain stable among which alanine:glyoxylate aminotransferase (AGT). Its deficiency causes primary hyperoxaluria type 1 (PH1, MIM 259900), an inborn error of glyoxylate metabolism characterized by hyperoxaluria, nephrocalcinosis, and renal insufficiency. Despite the normal level of AGT activity in ZSD patients, hyperoxaluria has been reported in several ZSD patients. We observed the unexpected occurrence of renal stones in a cohort of ZSD patients. This led us to perform a study in this cohort to determine the prevalence of hyperoxaluria in ZSDs and to find clinically relevant clues that correlate with the urinary oxalate load. We reviewed medical charts of 31 Dutch ZSD patients with prolonged survival (>1 year). Urinary oxalate excretion was assessed in 23 and glycolate in 22 patients. Hyperoxaluria was present in 19 (83%), and hyperglycolic aciduria in 14 (64%). Pyridoxine treatment in six patients did not reduce the oxalate excretion as in some PH1 patients. Renal involvement with urolithiasis and nephrocalcinosis was present in five of which one developed end-stage renal disease. The presence of hyperoxaluria, potentially leading to severe renal involvement, was statistically significant correlated with the severity of neurological dysfunction. ZSD patients should be screened by urinalysis for hyperoxaluria and renal ultrasound for nephrocalcinosis in order to take timely measures to prevent renal insufficiency.

3 Reads
  • Source
    • "Although most peroxisomal enzymes are unstable in the cytosol of ZSD patients, AGT and a few other enzymes remain stable. However , when carefully examined, most of these patients do develop hyperoxaluria, underscoring the importance of the compartmentalization of AGT in human peroxisomes in order to achieve proper glyoxylate detoxification [55]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.
    Biochimica et Biophysica Acta 03/2012; 1822(9):1453-64. DOI:10.1016/j.bbadis.2012.03.004 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defects in PEX genes impair peroxisome assembly and multiple metabolic pathways confined to this organelle, thus providing the biochemical and molecular bases of the peroxisome biogenesis disorders (PBD). PBD are divided into two types--Zellweger syndrome spectrum (ZSS) and rhizomelic chondrodysplasia punctata (RCDP). Biochemical studies performed in blood and urine are used to screen for the PBD. DNA testing is possible for all of the disorders, but is more challenging for the ZSS since 12 PEX genes are known to be associated with this spectrum of PBD. In contrast, PBD-RCDP is associated with defects in the PEX7 gene alone. Studies of the cellular and molecular defects in PBD patients have contributed significantly to our understanding of the role of each PEX gene in peroxisome assembly.
    Biochimica et Biophysica Acta 01/2007; 1763(12):1733-48. DOI:10.1016/j.bbamcr.2006.09.010 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The timing and yield of metabolic studies for patients with neurodevelopmental disorders is a matter of continuing debate. We determined the yield of additional or repeated metabolic studies in patients with neurodevelopmental disorders. Patients referred to a tertiary diagnostic center for patients with unexplained neurodevelopmental disorders were included. Initial metabolic studies had been performed in most patients (87%) before referral. Additional/repeated metabolic studies were individually tailored. Twelve metabolic diseases of 433 patients studied (2.8%) were diagnosed, despite normal initial metabolic studies before referral. Specific metabolic investigations lead to a greater diagnostic yield in patients with neurodevelopmental disorders.
    Annals of Neurology 07/2008; 64(2):212-7. DOI:10.1002/ana.21435 · 9.98 Impact Factor
Show more