Influenza virus inhibits RNA polymerase II elongation.

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
Virology (Impact Factor: 3.37). 08/2006; 351(1):210-7. DOI: 10.1016/j.virol.2006.03.005
Source: PubMed

ABSTRACT The influenza virus RNA-dependent RNA polymerase interacts with the serine-5 phosphorylated carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). It was proposed that this interaction allows the viral RNA polymerase to gain access to host mRNA-derived capped RNA fragments required as primers for the initiation of viral mRNA synthesis. Here, we show, using a chromatin immunoprecipitation (ChIP) analysis, that similar amounts of Pol II associate with Pol II promoter DNAs in influenza virus-infected and mock-infected cells. However, there is a statistically significant reduction in Pol II densities in the coding region of Pol II genes in infected cells. Thus, influenza virus specifically interferes with Pol II elongation, but not Pol II initiation. We propose that influenza virus RNA polymerase, by binding to the CTD of initiating Pol II and subsequent cleavage of the capped 5' end of the nascent transcript, triggers premature Pol II termination.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Influenza Avirus is one of the major pathogens that pose a large threat to human health worldwide and has caused pandemics. Influenza A virus is the Orthomyxoviridae prototype, and has 8 segmented negative-sense single-stranded RNA (vRNA) as its genome. Influenza virus RNA polymerase (RdRp) consists of three subunits PB2, PB1 and PA, and catalyzes both transcription and replication. Recently, intensive biochemical and structural analysis of its RdRp has been performed. In this paper, we review the details from the biochemical analysis of the purified influenza virus RdRp and the classical ribonucleoprotein complex, as well as piece together their structures to form an overall picture.
    Frontiers in Biology. 6(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past 10 years, a great number of studies have demonstrated that injection of plasmid DNA coding for certain genes results in the induction of humoral and cellular immune responses against the respective gene product. This vaccination approach covers a broad range of possible applications, including the induction of protective immunity against viral, bacterial, and parasitic infections, and it opens new perspectives for treatment of cancer. Surprisingly, DNA immunization also turned out as a promising novel type of immunotherapy against allergy. In this paper, we describe the construction of DNA vaccines for application in allergy models. Beyond, we offer a palette of recently developed modulations to optimize DNA vaccines for allergy treatment by increasing their immunogenicity and minimizing their anaphylactic potential.
    Methods 04/2004; 32(3):328-39. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The segmented genome of an influenza virus is encapsidated into ribonucleoprotein complexes (RNPs). Unusually among RNA viruses, influenza viruses replicate in the nucleus of an infected cell, and their RNPs must therefore recruit host factors to ensure transport across a number of cellular compartments during the course of an infection. Recent studies have shed new light on many of these processes, including the regulation of nuclear export, genome packaging, mechanisms of virion assembly and viral entry and, in particular, the identification of Rab11 on recycling endosomes as a key mediator of RNP transport and genome assembly. This review uses these recent gains in understanding to describe in detail the journey of an influenza A virus RNP from its synthesis in the nucleus through to its entry into the nucleus of a new host cell.
    Viruses 01/2013; 5(10):2424-2446. · 2.51 Impact Factor


Available from