Founder effect for the Ala431Glu mutation of the presenilin 1 gene causing early-onset Alzheimer’s disease in Mexican families

Departamento de Neurogenética y Biología Molecular, lnstituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, México D.F., México.
Neurogenetics (Impact Factor: 2.66). 08/2006; 7(3):195-200. DOI: 10.1007/s10048-006-0043-3
Source: PubMed

ABSTRACT The etiology of Alzheimer's disease (AD) is complex. To date, molecular genetic studies in several families affected with AD have identified three genes associated with highly penetrant early-onset AD: Presenilin 1 (PSEN1), Presenilin 2 (PSEN2) and beta-amyloid precursor protein (APP); and one gene (apolipoprotein E) associated with late-onset AD. Molecular analysis of the PSEN1 gene was performed by direct sequencing of genomic DNA. The possible founder effect was investigated analyzing two highly polymorphic microsatellite markers flanking the PSEN1 gene. Twelve unrelated Mexican families with early-onset AD were analyzed. The Ala431Glu mutation in exon 12 of PSEN1 was found in nine (75%) of these families, which segregated showing autosomal dominant inheritance. Because all families bearing the mutation are from the State of Jalisco (located in Western Mexico), a founder effect was hypothesized. Microsatellite haplotype analysis suggested a common ancestor in these nine kindreds. In conclusion, the Ala431Glu mutation is a prevalent cause of early-onset familial Alzheimer's disease in families from the State of Jalisco, Mexico. Genetic evidence supports that it is a founder mutation descending from a single common ancestor. These findings have important implications for prompt diagnosis and genetic counseling for Mexican patients with familial AD from Jalisco.

Download full-text


Available from: Marisol López, Jan 13, 2015
  • Source
    • "Subjects Subjects came from 8 families: 2 families had the V717I substitution in APP (Mullan et al. 1993), 1 the L235V substitution in PSEN1, and 5 had the A431E substitution in PSEN1, representing a founder effect (Murrell et al. 2006; Yescas et al. 2006). Mean age of symptom onset among families ranged from 36 to 49 years. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior functional magnetic resonance imaging (fMRI) studies have found increased activity-related blood oxygen level-dependent (BOLD) signal in cognitively normal persons at genetic risk for Alzheimer's disease (AD). This has been interpreted as a compensatory response to incipient AD pathology. We studied the effects of fully penetrant familial Alzheimer's disease (FAD) mutations and apolipoprotein E (APOE) genotype on BOLD fMRI during a novelty encoding task in presymptomatic subjects. Twenty-three Mexican or Mexican-American persons at-risk for inheriting FAD mutations performed a block design novelty encoding task, and activation exhibited by FAD mutation carriers (MCs) was contrasted with that of noncarriers (NCs) and among APOE genotype groups. FAD MCs (n = 14) showed decreased BOLD activation in the anterior cingulate gyrus relative to 9 NCs. No increased activation was seen in MCs relative to NCs. Four APOE ε3/4 carriers demonstrated increased BOLD signal compared with 14 ε3/3 carriers in the occipital and perisylvian cortices bilaterally. There were no areas where ε3/3 carriers activated more than ε3/4 carriers. Our findings of increased fMRI activation associated with APOE genotype but not with FAD mutations suggest that APOE exerts an effect on the BOLD signal that is not readily explained as a compensatory phenomenon.
    Cerebral Cortex 04/2011; 21(4):877-83. DOI:10.1093/cercor/bhq158 · 8.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nine families with autosomal dominant Alzheimer's disease (AD), all of whom had the Ala431Glu substitution in the PSEN1 gene and came from Jalisco State in Mexico, have been previously reported. As they shared highly polymorphic flanking dinucleotide marker alleles, this strongly suggests that this mutation arose from a common founder. In the current letter, we expand this observation by describing an additional 15 independent families with the Ala431Glu substitution in the PSEN1 gene and conclude that this mutation is not an uncommon cause of early-onset autosomal dominant AD in persons of Mexican origin.
    Neurogenetics 12/2006; 7(4):277-9. DOI:10.1007/s10048-006-0053-1 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persons at risk for familial Alzheimer disease (FAD) provide a model in which biomarkers can be studied in presymptomatic disease. Twenty-one subjects at risk for presenilin-1 (n = 17) or amyloid precursor protein (n = 4) mutations underwent evaluation with the Clinical Dementia Rating (CDR) scale. We obtained plasma from all subjects and CSF from 11. Plasma (Abeta(40), Abeta(42), F(2)-isoprostanes) and CSF (F(2)-isoprostanes, t-tau, p-tau(181), Abeta(40), Abeta(42), and Abeta(42)/Abeta(40) ratio) levels were compared between FAD mutation carriers (MCs) and noncarriers (NCs). Plasma Abeta(42) levels (25.1 pM vs 15.5 pM, p = 0.031) and the ratio of Abeta(42)/Abeta(40) (0.16 vs 0.11, p = 0.045) were higher in presymptomatic MCs. Among MCs, those with CDR scores of 0.5 had lower plasma Abeta(42) levels than those with CDR scores of 0 (14.1 pM vs 25.1, p = 0.02). The ratio of Abeta(42) to Abeta(40) was also reduced in the CSF (0.08 vs 0.15, p = 0.046) of nondemented MCs compared to NCs. Total CSF tau and p-tau(181) levels were elevated in presymptomatic FAD MCs. CSF levels of F(2)-isoprostanes were also elevated in MCs (n = 7, 48.6 pg/mL) compared to NCs (n = 4, 21.6 pg/mL, p = 0.031). Our data indicate that Abeta(42) is elevated in plasma in familial Alzheimer disease (FAD) mutation carriers (MCs) and suggests that this level may decrease with disease progression prior to the development of overt dementia. We also demonstrated that the ratio of Abeta(42) to Abeta(40) was reduced in the CSF of nondemented MCs and that elevations of t-tau and p-tau(181) are sensitive indicators of presymptomatic disease. Our finding of elevated F(2)-isoprostane levels in the CSF of preclinical FAD MCs suggests that oxidative stress occurs downstream to mismetabolism of amyloid precursor protein.
    Neurology 08/2008; 71(2):85-92. DOI:10.1212/01.wnl.0000303973.71803.81 · 8.30 Impact Factor
Show more