Article

Dysregulation of signaling pathways in CD45-deficient NK cells leads to differentially regulated cytotoxicity and cytokine production.

Department of Microbiology and Immunology and Cancer Research Institute, University of California, San Francisco, CA 94143, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2006; 103(18):7012-7. DOI: 10.1073/pnas.0601851103
Source: PubMed

ABSTRACT CD45, a protein tyrosine phosphatase that regulates Src family kinases, is important for regulating T cell and B cell receptor signaling; however, little is known about how CD45 regulates immunoreceptor tyrosine-based activation motif (ITAM)-dependent natural killer (NK) cell receptor signaling and the resulting effector functions. NK cells from CD45-deficient mice are relatively competent for ITAM receptor-induced cell-mediated cytotoxicity, yet completely deficient for cytokine secretion after stimulation with ligands to or antibodies against NK1.1, CD16, Ly49H, Ly49D, and NKG2D. This deficiency in cytokine/chemokine production occurs at the level of mRNA expression. After receptor engagement, extracellular signal-regulated kinase and c-Jun N-terminal kinase activation was markedly perturbed, whereas p38 activation was not substantially affected. The pattern and amounts of basal tyrosine phosphorylation were altered in freshly isolated NK cells and were surprisingly and markedly increased in IL-2-expanded NK cells from CD45-/- mice. These findings indicate that CD45-dependent regulation of ITAM-dependent signaling pathways is essential for NK cell-mediated cytokine production but not cytolytic activity.

Download full-text

Full-text

Available from: Arthur Weiss, Aug 25, 2014
0 Followers
 · 
48 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS). Recently, TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS was shown to induce IFN-γ production in the presence of IL-2 in NK cell populations containing>98% CD56(+) cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DR(-bright), CD14(+), CD3(+), and CD20(+) cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4(-)CD56(+) NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that R(e)-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full-length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.
    Frontiers in Immunology 01/2013; 4:11. DOI:10.3389/fimmu.2013.00011
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cell cytotoxicity is mediated by multiple germ line-encoded activating receptors that recognize specific ligands expressed by tumor cells and virally infected cells. These activating receptors are opposed by NK inhibitory receptors, which recognize major histocompatibility complex class I molecules on potential targets, raising the threshold for NK cell activation. Once an abnormal cell has been detected, NK cells are the sentinel source of cytolytic mediators, such as granzymes and perforins, as well as interferon-gamma, which can polarize the immune response to a T-helper 1 cell type. Activation signals are transmitted by adhesion-dependent pathways, immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathways, DAP10 ITAM-independent pathways, and by signaling through immunoreceptor tyrosine-based switch motifs. These pathways activate downstream signaling partners to trigger NK cell cytotoxicity. Some of these downstream molecules are unique to the various pathways, and some of these molecules are shared. Because of the complexity of signals involved in NK cell-target cell interaction, the generation of mice with targeted mutations in signaling molecules involved in adhesion, activation, or inhibition is essential for a precise dissection of the mechanisms regulating NK cell effector functions. Here we review recent advances in the genetic analysis of the signaling pathways that mediate NK cell killing.
    Immunological Reviews 01/2007; 214(1):92-105. DOI:10.1111/j.1600-065X.2006.00463.x · 12.91 Impact Factor