Article

CD73/Ecto-5 '-nucleotidase protects against vascular inflammation and neointima formation

Institute of Molecular Cardiovascular Research, Rheinisch-Westfälische Technisch Hochschule, Aachen, Germany.
Circulation (Impact Factor: 14.95). 06/2006; 113(17):2120-7. DOI: 10.1161/CIRCULATIONAHA.105.595249
Source: PubMed

ABSTRACT Although CD73/ecto-5'-nucleotidase has been implicated in maintaining vasoprotection, its role in regulating endothelial adhesion molecule or inflammatory monocyte recruitment (eg, in the context of vascular injury) remains to be defined.
Compared with wild-type mice, CD73-deficient (CD73(-/-)) mice exhibit increased luminal staining and protein and transcript expression for vascular cell adhesion molecule (VCAM)-1 in carotid arteries. In vitro, aortic endothelial cells (ECs) from CD73(-/-) mice display an upregulation of mRNA and protein expression of VCAM-1, associated with increased nuclear factor (NF)-kappaB activity, as determined by chromatin cross-linking and immunoprecipitation or quantitative p65 binding assays. CD73(-/-) ECs and carotid arteries perfused ex vivo supported increased monocyte arrest under flow conditions, which was mediated by alpha(4beta1) integrin. After wire injury of carotid arteries, CD73 expression and activity were upregulated in wild-type mice, whereas neointimal plaque formation and macrophage content were increased in CD73(-/-) mice versus wild-type mice, concomitant with elevated NF-kappaB activation, luminal VCAM-1 expression, and soluble VCAM-1 concentrations. In contrast, reconstitution of wild-type mice with CD73(-/-) versus CD73(+/+) BM did not significantly exacerbate neointima formation. Treatment with the specific A2A receptor agonist ATL-146e reversed the increased VCAM-1 transcript and protein expression in CD73(-/-) ECs and inhibited monocyte arrest on CD73(-/-) ECs. Continuous infusion of ATL-146e prevented neointima formation in CD73(-/-) mice.
Our data epitomize the importance of vascular CD73 in limiting endothelial activation and monocyte recruitment via generation of adenosine acting through the A2A receptor, providing a molecular basis for therapeutic protection against vascular inflammation and neointimal hyperplasia.

0 Followers
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis. © 2014 S. Karger AG, Basel.
    Journal of Vascular Research 05/2014; 51(2):149-161. DOI:10.1159/000362122 · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD73, ecto-5'-nucleotidase, is the key enzyme catalyzing the conversion of extracellular AMP to adenosine that controls vascular permeability and immunosuppression. Also prostatic acid phosphatase (PAP) possesses ecto-5'-nucleotidase/AMPase activity and is present in leukocytes. However, its role related to immune system is unknown. Therefore, we analyzed enzymatic activities and leukocyte subtypes of CD73 and PAP knockouts and generated CD73/PAP double knockout mice to elucidate the contribution of CD73 and PAP to immunological parameters. Enzymatic assays confirmed the ability of recombinant human PAP to hydrolyze [(3)H]AMP, although at much lower rate than human CD73. Nevertheless, 5'-nucleotidase/AMPase activity in splenocytes and lymphocytes from PAP(-/-) mice tended to be lower than in wild-type controls, suggesting potential contribution of PAP, along with CD73, into lymphoid AMP metabolism ex vivo. Single knockouts had decreased number of CD4(+)/CD25(+)/FoxP3 (+) regulatory T cells in thymus and CD73/PAP double knockouts exhibited reduced percentages of CD4(+) cells in spleen, regulatory T cells in lymph nodes and thymus, and CD4(+) and CD8(+) cells in blood. These findings suggest that PAP has a synergistic role together with CD73 in the immune system by contributing to the balance of leukocyte subpopulations and especially to the number of regulatory T cells in lymph nodes and thymus.
    Mediators of Inflammation 08/2014; 2014:485743. DOI:10.1155/2014/485743 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed an F2A-based multicistronic system to evaluate functional effects of co-expression of three proteins important for xenotransplantation: heme oxygenase 1 (HO1), ecto-5'-nucleotidase (E5NT) and ecto-nucleoside triphosphate diphosphohydrolase-1 (ENTPD1). The tricistronic p2A plasmid that we constructed was able to efficiently drive concurrent expression of HO1, E5NT and ENTPD1 in HEK293T cells. All three overexpressed proteins possessed relevant enzymatic activities, while addition of furin site interfered with protein expression and activity. We conclude that our tricistronic p2A construct is effective and optimal to test the combined protective effects of HO1, E5NT and ENTPD1 against xeno-rejection mechanisms. Copyright © 2015. Published by Elsevier Inc.
    Plasmid 03/2015; 79. DOI:10.1016/j.plasmid.2015.03.004 · 1.76 Impact Factor