Granzyme B mediates neurotoxicity through a G-protein-coupled receptor.

Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
The FASEB Journal (Impact Factor: 5.48). 07/2006; 20(8):1209-11. DOI: 10.1096/fj.05-5022fje
Source: PubMed

ABSTRACT Neuroinflammatory diseases such as multiple sclerosis (MS) are characterized by focal regions of demyelination and axonal loss associated with infiltrating T cells. However, the role of activated T cells in causing neuronal injury remains unclear. CD4 and CD8 T cells were isolated from normal donors and polyclonally activated using plate-bound anti-CD3 and soluble anti-CD28. The conditioned T cell supernatants caused toxicity to cultured human fetal neurons, which could be blocked by immunodepleting the supernatants of granzyme B (GrB). Recombinant GrB also caused toxicity in neurons by caspase-dependent pathways but no toxicity was seen in astrocytes. The neurotoxicity was independent of perforin and could not be blocked by mannose-6-phosphate. However, GrB-induced neurotoxicity was sensitive to pertussis toxin, implicating the stimulation of Gialpha protein-coupled receptors. GrB caused a decrease in cAMP levels but only modest increases in intracellular calcium. The effect on intracellular calcium could be markedly potentiated by stromal-derived factor 1alpha. GrB-induced neurotoxicity could also be blocked by vitamin E and a neuroimmunophilin ligand. In conclusion, GrB may be an important mediator of neuronal injury in T cell-mediated neuroinflammatory disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) comprise a highly heritable, multifarious group of neurodevelopmental disorders, which are characterized by repetitive behaviors and impairments in social interactions. Point mutations have been identified in X-linked Neuroligin (NLGN) 3 and 4X genes in patients with ASDs and all of these reside in their extracellular domains except for a single point mutation in the cytoplasmic domain of NLGN4X in which an arginine is mutated to a cysteine (R704C). Here we show that endogenous NLGN4X is robustly phosphorylated by protein kinase C (PKC) at T707, and R704C completely eliminates T707 phosphorylation. Endogenous NLGN4X is intensely phosphorylated on T707 upon PKC stimulation in human neurons. Furthermore, a phospho-mimetic mutation at T707 has a profound effect on NLGN4X-mediated excitatory potentiation. Our results now establish an important interplay between a genetic mutation, a key posttranslational modification, and robust synaptic changes, which can provide insights into the synaptic dysfunction of ASDs.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1500501112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mosquito-borne alphaviruses are important causes of epidemic encephalomyelitis. Neuronal cell death during fatal alphavirus encephalomyelitis is immune-mediated; however, the types of cells involved and their regulation have not been determined. We show that the virus-induced inflammatory response was accompanied by production of the regulatory cytokine IL-10, and in the absence of IL-10, paralytic disease occurred earlier and mice died faster. To determine the reason for accelerated disease in the absence of IL-10, immune responses in the CNS of IL-10(-/-) and wild-type (WT) mice were compared. There were no differences in the amounts of brain inflammation or peak virus replication; however, IL-10(-/-) animals had accelerated and increased infiltration of CD4(+)IL-17A(+) and CD4(+)IL-17A(+)IFNγ(+) cells compared with WT animals. Th17 cells infiltrating the brain demonstrated a pathogenic phenotype with the expression of the transcription factor, Tbet, and the production of granzyme B, IL-22, and GM-CSF, with greater production of GM-CSF in IL-10(-/-) mice. Therefore, in fatal alphavirus encephalomyelitis, pathogenic Th17 cells enter the CNS at the onset of neurologic disease and, in the absence of IL-10, appear earlier, develop into Th1/Th17 cells more often, and have greater production of GM-CSF. This study demonstrates a role for pathogenic Th17 cells in fatal viral encephalitis.
    Proceedings of the National Academy of Sciences 10/2014; 111(45). DOI:10.1073/pnas.1418966111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: T cells infiltrate into the infarcted brain within days after cerebral ischemia and play essential roles in exacerbating the delayed phase of the brain injury by producing pro-inflammatory factors. However, the involvement of these factors in brain damage is also demonstrated systemically. Such periphery-brain abnormalities are interesting because they may constitute a pathway to the central nervous system (CNS), which may be a target of therapeutic hypothermia. Although this therapy protects neurons after severe brain damage, the underlying mechanisms are partly understood. We examined the effects of hypothermic and hyperthermic cultures on peripheral T cell-derived release of interleukin (IL)-17 and granzyme B (GrB) and evaluated whether and how these factors induced neurotoxicity and activated brain endothelial cells. We determined levels of IL-17 and GrB produced by several activated, IL-1β/IL-23-treated activated T cells (naïve CD4(+), CD4(+), CD8(+), and γδ T cells obtained from healthy humans) under hypothermia, normothermia, and hyperthermia. The viability of neuronal SH-SY5Y cells treated with IL-17 or GrB and mRNA expression of adhesion molecules/chemokines by brain endothelial bEND.3 cells treated with IL-17 were also measured. Compared with normothermia, IL-17 and GrB release in these T cells was reduced by hypothermia but augmented by hyperthermia. IL-17 and GrB caused the death of neuronal SH-SY5Y cells, and IL-17 upregulated mRNA expression of several adhesion molecules/chemokines in bEND.3 cells; both effects were concentration-dependent. Hypothermia reduced but hyperthermia augmented T cell-derived release of IL-17 and GrB that mediate neuronal cell death, suggesting that the attenuation of T cell-derived release of these factors by therapeutic hypothermia leads to the inhibition of neuronal cell death in the delayed phase of brain injury. Moreover, hypothermia may suppress but hyperthermia may promote the recruitment of inflammatory cells to CNS by regulating brain endothelial activation of IL-17.
    Neurocritical Care 12/2014; DOI:10.1007/s12028-014-0094-5 · 2.60 Impact Factor