Occurrence of Helicobacter species other than H. hepaticus in laboratory mice and rats in Sweden

Department of Bacteriology, National Veterinary Institute (SVA), Uppsala, Sweden.
Comparative medicine (Impact Factor: 0.74). 05/2006; 56(2):110-3.
Source: PubMed


The aim of this study was to determine which Helicobacter species other than H. hepaticus colonize laboratory mice and rats in Sweden. We analyzed 63 intestinal samples from mice and 42 intestinal samples from rats by partial 16S rDNA sequence analysis. Previously these samples had been found positive for Helicobacter species but negative for H. hepaticus in a polymerase chain reaction screening assay at the National Veterinary Institute in Sweden. H. ganmani, H. typhlonius, H. rodentium, an uncharacterized Helicobacter species ('hamster B'), and a possibly novel species were detected in mice. The possibly novel species was most closely related to H. apodemus strain YMRC 000216 (98.3% sequence similarity). Two different Helicobacter species were detected in rats: H. ganmani and H. rodentium. H. ganmani colonization of rats has not previously been reported.

16 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection with Helicobacter species is endemic in many animal facilities and may alter the penetrance of inflammatory bowel disease (IBD) phenotypes. However, little is known about the relative pathogenicity of H. typhlonius, H. rodentium, and combined infection in IBD models. We infected adult and neonatal IL10-/- mice with H. typhlonius, H. rodentium, or both bacteria. The severity of IBD and incidence of inflammation-associated colonic neoplasia were assessed in the presence and absence of antiHelicobacter therapy. Infected IL10-/- mice developed IBD with severity of noninfected (minimal to no inflammation) < H. rodentium < H. typhlonius <mixed H. rodentium + H. typhlonius (severe inflammation). Inflammation-associated colonic neoplasia was common in infected mice and its incidence correlated with IBD severity. Combined treatment with amoxicillin, clarithromycin, metronidazole, and omeprazole eradicated Helicobacter in infected mice and ameliorated established IBD in both infected and noninfected mice. Infection of IL10-/- mice with H. rodentium, H. typhlonius, or both organisms can trigger development of severe IBD that eventually leads to colonic neoplasia. The high incidence and multiplicity of neoplastic lesions in infected mice make this model well-suited for future research related to the development and chemoprevention of inflammation-associated colon cancer. The similar antiinflammatory effect of antibiotic therapy in Helicobacter-infected and -noninfected IL10-/- mice with colitis indicates that unidentified microbiota in addition to Helicobacter drive the inflammatory process in this model. This finding suggests a complex role for both Helicobacter and other intestinal microbiota in the onset and perpetuation of IBD in these susceptible hosts.
    Comparative medicine 12/2008; 58(6):534-41. · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of mouse colonies with Helicobacter spp. has become an increasing concern for the research community. Although Helicobacter infection may cause clinical disease, investigators may be unaware that their laboratory mice are infected because the pathology of Helicobacter species is host-dependent and may not be recognized clinically. The effects of Helicobacter infections are not limited to the gastrointestinal system and can affect reproduction, the development of cancers in gastrointestinal organs and remote organs such as the breast, responses to vaccines, and other areas of research. The data we present in this review show clearly that unintentional Helicobacter infection has the potential to significantly interfere with the reliability of research studies based on murine models. Therefore, frequent screening of rodent research colonies for Helicobacter spp. and the eradication of these pathogens should be key goals of the research community.
    Comparative medicine 03/2009; 59(1):10-7. · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mouse models provide powerful tools to investigate disease mechanisms and are widely used in inflammatory bowel disease research. However, it is common for reports of mouse model studies to lack potentially important information about the microbial status of the mice and the method used to evaluate disease expression for statistical analysis. For example, it is common practice to state that the mice were housed under specific pathogen-free conditions but provide no further information regarding the presence or absence of organisms such as Helicobacter spp. that are known or likely to affect disease expression, thus omitting information potentially important to the expected phenotype of the mice and their responses to experimental manipulation. We therefore encourage authors to use such terms as "conventional" and "specific pathogen-free" precisely, to state the agents from which the mice are represented to be free, and to provide a brief description of the health monitoring protocol. Descriptions of histopathologic methods used to evaluate colitis in mouse models also often do not include sufficient detail to allow readers to understand and evaluate the methods; in addition, the lesions commonly are shown in photomicrographs that are too small and of too low resolution to be interpreted. Inasmuch as such methods are often the major or only source of data upon which conclusions regarding genotype or experimental treatment effects are based, the method employed should be fully described, and photomicrographs should be of adequate size and resolution to allow independent assessment.
    Inflammatory Bowel Diseases 08/2012; 18(8):1558-65. DOI:10.1002/ibd.22892 · 4.46 Impact Factor
Show more