Article

Local unfolding in a destabilized, pathogenic variant of superoxide dismutase 1 observed with H/D exchange and mass spectrometry

Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 07/2006; 281(26):18167-76. DOI: 10.1074/jbc.M600623200
Source: PubMed

ABSTRACT Hydrogen exchange monitored by mass spectrometry has been used to study the structural behavior of the pathogenic A4V variant of superoxide dismutase 1 (SOD1) in the metal-free (apo) form. Mass spectrometric data revealed that in the disulfide-intact (S-S) form, the A4V variant is destabilized at residues 50-53, in the disulfide subloop of the dimer interface, but many other regions of the A4V protein exhibited hydrogen exchange properties identical to that of the wild type protein. Additionally, mass spectrometry revealed that A4V apoSOD1(S-S) undergoes slow localized unfolding in a large segment of the beta-barrel that included beta3, beta4, and loops II and III. In the disulfide-reduced form, A4V apoSOD1 exchanged like a "random coil" polypeptide at 20 degrees C and began to populate folded states at 4 degrees C. These local and global unfolding events could facilitate intermolecular protein-protein interactions that cause the aggregation or neurotoxicity of A4V SOD1.

0 Followers
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prions are molecular pathogens, able to convert a normal cellular prion protein (PrP(C)) into a prion (PrP(Sc)). The information necessary for this conversion is contained in the conformation of PrP(Sc). Mass spectrometry (MS) and small-molecule covalent reactions have been used to study prions. Mass spectrometry has been used to detect and quantitate prions in the attomole range (10(-18)mole). MS-based analysis showed that both possess identical amino acid sequences, one disulfide bond, a GPI anchor, asparagine-linked sugar antennae, and unoxidized methionines. Mass spectrometry has been used to define elements of the secondary and tertiary structure of wild-type PrP(Sc) and GPI-anchorless PrP(Sc). It has also been used to study the quaternary structure of the PrP(Sc) multimer. Small molecule reagents react differently with the same lysine in the PrP(C) conformation than in the PrP(Sc) conformation. Such differences can be detected by western blot using mAbs with lysine-containing epitopes, such as 3F4 and 6D11. This permits the detection of PrP(Sc) without the need for proteinase K pretreatment and can be used to distinguish among prion strains. These results illustrate how two important chemical tools, mass spectrometry and covalent modification by small molecules, are being applied to the detection and structural study of prions.
    Prion 02/2014; 8(1). DOI:10.4161/pri.27891
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein engineering aimed at enhancing enzyme stability is increasingly supported by computational methods for calculation of mutant folding energies and for the design of disulfide bonds. To examine the accuracy of mutant structure predictions underlying these computational methods, crystal structures of thermostable limonene epoxide hydrolase variants obtained by computational library design were determined. Four different predicted effects indeed contributed to the obtained stabilization: (i) enhanced interactions between a flexible loop close to the N-terminus and the rest of the protein; (ii) improved interactions at the dimer interface; (iii) removal of unsatisfied hydrogen bonding groups; and (iv) introduction of additional positively charged groups at the surface. The structures of an eightfold and an elevenfold mutant showed that most mutations introduced the intended stabilizing interactions, and side-chain conformations were correctly predicted for 72-88% of the point mutations. However, mutations that introduced a disulfide bond in a flexible region had a larger influence on the backbone conformation than predicted. The enzyme active sites were unaltered, in agreement with the observed preservation of catalytic activities. The structures also revealed how a c-Myc tag, which was introduced for facile detection and purification, can reduce access to the active site and thereby lower the catalytic activity. Finally, sequence analysis showed that comprehensive mutant energy calculations discovered stabilizing mutations that are not proposed by the consensus or B-FIT methods. This article is protected by copyright. All rights reserved. © 2015 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 03/2015; 83(5). DOI:10.1002/prot.24791
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the magnitude of a protein's net charge (Z) can control its rate of self-assembly into amyloid, and its interactions with cellular membranes, the net charge of a protein is not viewed as a druggable parameter. This article demonstrates that aspirin (the quintessential acylating pharmacon) can inhibit the amyloidogenesis of superoxide dismutase (SOD1) by increasing the intrinsic net negative charge of the polypeptide, i.e., by acetylation (neutralization) of multiple lysines. The protective effects of acetylation were diminished (but not abolished) in 100 mM NaCl and were statistically significant: a total of 432 thioflavin-T amyloid assays were performed for all studied proteins. The acetylation of as few as three lysines by aspirin in A4V apo-SOD1-a variant that causes familial amyotrophic lateral sclerosis (ALS)-delayed amyloid nucleation by 38% and slowed amyloid propagation by twofold. Lysines in wild-type- and ALS-variant apo-SOD1 could also be peracetylated with aspirin after fibrillization, resulting in supercharged fibrils, with increases in formal net charge of ∼2 million units. Peracetylated SOD1 amyloid defibrillized at temperatures below unacetylated fibrils, and below the melting temperature of native Cu2,Zn2-SOD1 (e.g., fibril Tm = 84.49°C for acetylated D90A apo-SOD1 fibrils). Targeting the net charge of native or misfolded proteins with small molecules-analogous to how an enzyme's Km or Vmax are medicinally targeted-holds promise as a strategy in the design of therapies for diseases linked to protein self-assembly. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.