Article

Intraarticular corticosteroids decrease synovial RANKL expression in inflammatory arthritis

Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
Arthritis & Rheumatology (Impact Factor: 7.87). 05/2006; 54(5):1463-72. DOI: 10.1002/art.21767
Source: PubMed

ABSTRACT Intraarticular corticosteroids are frequently used as successful adjuvant therapy for inflammatory arthritides, but little is known about their effects on molecules that regulate bone biology. We undertook this study to investigate the effect of intraarticular corticosteroids on the synovial expression of RANKL and osteoprotegerin (OPG).
We evaluated RANKL, OPG, and surface marker expression by immunohistochemical methods in synovial knee biopsy samples obtained from 13 patients with inflammatory arthritis before and 2 weeks following intraarticular injection of triamcinolone hexacetonide. We further investigated the effect of dexamethasone (DEX) on RANKL expression by lymphocytes from rheumatoid arthritis synovial fluids (RA SF), using flow cytometric analysis. Finally, we evaluated the in vitro effect of DEX on RANKL and OPG expression in osteoblast-like cells, by Western blotting.
Intraarticular corticosteroids induced a decrease in the number of synovial T cells without influencing the number of macrophages, evaluated as both CD68+ and CD163+ cells. This change was paralleled by a decrease of synovial RANKL expression with a concomitant reduction of the RANKL:OPG ratio. DEX down-regulated RANKL expression on lymphocytes derived from RA SF. Moreover, in vitro pretreatment of osteoblast-like cells with tumor necrosis factor favored an antiresorptive effect of DEX treatment through a similar down-regulation of RANKL expression.
The decrease in inflammation attributed to intraarticular corticosteroids is accompanied by down-modulation of bone destruction markers. These findings offer a rationale for the beneficial effect of corticosteroids on joint erosion in arthritis.

Download full-text

Full-text

Available from: Anca Catrina, Nov 07, 2014
0 Followers
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 11beta-Hydroxysteroid dehydrogenase 1 (11HSD1) regulates local glucocorticoid activity and plays an important role in various diseases. Here, we studied whether arthritis modulates 11HSD1, what is the role of pro-inflammatory cytokines in this process and whether altered local metabolism of glucocorticoids may contribute to the feedback regulation of inflammation. Adjuvant arthritis increased synovial 11HSD1 mRNA and 11-reductase activity but treatments with tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) antagonists etanercept and anakinra reduced 11HSD1 upregulation. Treatment with carbenoxolone, an 11HSD inhibitor, increased expression of TNF-alpha, cyclooxygenase 2, and osteopontin mRNA without any changes in the plasma levels of corticosterone. Similar changes were observed when arthritic rats were treated with RU486, an antagonist of GR. This study suggests that arthritis upregulates synovial 11HSD1, this upregulation is controlled by TNF-alpha and IL-1beta and that the increased supply of local corticosterone might contribute to feedback regulation of inflammation.
    Molecular and Cellular Endocrinology 03/2010; 323(2):155-60. DOI:10.1016/j.mce.2010.03.003 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present paper concerns both the optimization of dexamethasone (DXM) entrapment and its release from biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by the solvent evaporation process. Since the addition of DXM induced the formation of drug crystals beside the nanoparticle suspension, the influence of several parameters on DXM encapsulation was investigated such as the type of organic solvent and polymer, the DXM initial mass, the evaporation rate of the solvent, the continuous phase saturation and the incorporation of a lipid in the polymer. Nanoparticle size and zeta potential were not modified in the presence of DXM and were respectively around 230 nm and -4 mV. The highest drug loading was obtained using 100 mg PLGA 75:25 in a mixture of acetone-dichloromethane 1:1 (v:v) and 10 mg of DXM. The drug was completely released from this optimized formulation after 4 h of incubation at 37 degrees C. Neither the evaporation rate of the organic solvent, nor the aqueous phase saturation with salt or the incorporation of 1mg 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) within the nanoparticles modified the encapsulation efficiency. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) demonstrated that the drug was molecularly dispersed within the nanoparticles whereas the non-encapsulated DXM crystallized. These results demonstrate the feasibility of encapsulating dexamethasone and its subsequent delivery.
    International Journal of Pharmaceutics 04/2007; 331(2):153-9. DOI:10.1016/j.ijpharm.2006.11.028 · 3.79 Impact Factor
  • Source
    Arthritis & Rheumatology 01/2007; 56(1):387-8. DOI:10.1002/art.22318 · 7.87 Impact Factor