Identification of a PDZ protein, PIST, as a binding partner for Rho effector Rhotekin: biochemical and cell-biological characterization of Rhotekin-PIST interaction.

Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-Cho, Kasugai, Aichi 480-0392, Japan.
Biochemical Journal (Impact Factor: 4.78). 09/2006; 397(3):389-98. DOI: 10.1042/BJ20052015
Source: PubMed

ABSTRACT Among various effector proteins for the small GTPase Rho, the function(s) of Rhotekin is (are) almost unknown. We have identified PIST [PDZ (PSD-95, Discs-large and ZO-1) domain protein interacting specifically with TC10 (a Rho-family small GTPase)] as a binding partner for Rhotekin, using yeast two-hybrid screening. Rhotekin was found to associate with PIST in vitro and in both polarized and non-polarized MDCK (Madin-Darby canine kidney) cells. The C-terminal SPV (Ser-Pro-Val) motif of Rhotekin exhibited binding to the PDZ domain of PIST. The binding was markedly inhibited by an activated version of Rho and partially by that of Rac or Cdc42 in COS7 cells. In contrast, TC10 had no effects on the binding. Immunofluorescence analyses revealed the co-localization of PIST and Rhotekin at the Golgi apparatus in non-polarized fibroblast-like MDCK cells and AJs (adherens junctions) in the fully polarized cells. PIST and Rhotekin are recruited from the cytosol to AJs as the cell becomes polarized. Expression of constitutively active Rho or prevention of Rhotekin-PIST interaction induced diffuse cytoplasmic distribution of Rhotekin in polarized MDCK cells. These results suggest that there is (1) Rho-dependent regulation of Rhotekin-PIST interaction, (2) involvement of PIST in the recruitment of Rhotekin to AJs and (3) a possible role(s) for these two proteins in cell-polarity development and/or maintenance.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RhoA is one of the more extensively studied members of the Rho family of small GTPase where it is most readily recognized for its contributions to actin-myosin contractility and stress fiber formation. Accordingly, RhoA function during cell migration has been relegated to the rear of the cell where it mediates retraction of the trailing edge. However, RhoA can also mediate membrane ruffling, lamellae formation and membrane blebbing, thus suggesting an active role in membrane protrusions at the leading edge. With the advent of fluorescence resonance energy transfer (FRET)-based Rho activity reporters, RhoA has been shown to be active at the leading edge of migrating cells where it precedes Rac and Cdc42 activation. These observations demonstrate a remarkable versatility to RhoA signaling, but how RhoA function can switch between contraction and protrusion has remained an enigma. This review highlights recent advances regarding how the cooperation of Rho effector Rhotekin and S100A4 suppresses stress fiber generation to permit RhoA-mediated lamellae formation.
    Small GTPases 06/2013; 4(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Golgi-localized cystic fibrosis transmembrane conductance regulator (CFTR)-associated ligand (CAL) and syntaxin 6 (STX6) regulate the abundance of mature, post-ER CFTR by forming a CAL/STX6/CFTR complex (CAL complex) that promotes CFTR degradation in lysosomes. However, the molecular mechanism underlying this degradation is unknown. Here we investigated the interaction of a Golgi-localized, membrane-associated RING-CH E3 ubiquitin ligase, MARCH2, with the CAL complex and the consequent binding, ubiquitination, and degradation of mature CFTR. We found that MARCH2 not only co-immunoprecipitated and co-localized with CAL and STX6, but its binding to CAL was also enhanced by STX6, suggesting a synergistic interaction. In vivo ubiquitination assays demonstrated the ubiquitination of CFTR by MARCH2, and overexpression of MARCH2, like that of CAL and STX6, led to a dose-dependent degradation of mature CFTR that was blocked by bafilomycin A1 treatment. A catalytically dead MARCH2 RING mutant was unable to promote CFTR degradation. In addition, MARCH2 had no effect on a CFTR mutant lacking the PDZ motif, suggesting that binding to the PDZ domain of CAL is required for MARCH2-mediated degradation of CFTR. Indeed, silencing of endogenous CAL ablated the effect of MARCH2 on CFTR. Consistent with its Golgi localization, MARCH2 had no effect on ER-localized ΔF508-CFTR. Finally, siRNA-mediated silencing of endogenous MARCH2 in the CF epithelial cell line CFBE-CFTR increased the abundance of mature CFTR. Taken together, these data suggest that the recruitment of the E3 ubiquitin ligase MARCH2 to the CAL complex and subsequent ubiquitination of CFTR are responsible for the CAL-mediated lysosomal degradation of mature CFTR.
    PLoS ONE 06/2013; 8(6):e68001. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessively inherited disorder with mental retardation (MR). Recently, mutations in the SIL1 gene, encoding a co-chaperone which regulates the chaperone HSPA5, were identified as a major cause of MSS. We here examined the pathophysiological significance of SIL1 mutations in abnormal corticogenesis of MSS. SIL1-silencing caused neuronal migration delay during corticogenesis ex vivo. While RNAi-resistant SIL1 rescued the defects, three MSS-causing SIL1 mutants tested did not. These mutants had lower affinities to HSPA5 in vitro, and SIL1-HSPA5 interaction as well as HSPA5 function was found to be crucial for neuronal migration ex vivo. Furthermore time-lapse imaging revealed morphological disorganization associated with abnormal migration of SIL1-deficient neurons. These results suggest that the mutations prevent SIL1 from interacting with and regulating HSPA5, leading to abnormal neuronal morphology and migration. Consistent with this, when SIL1 was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed. Taken together, abnormal neuronal migration and interhemispheric axon development may contribute to MR in MSS.
    EMBO Molecular Medicine 01/2014; · 7.80 Impact Factor

Full-text (4 Sources)

Available from
May 19, 2014