Article

Chromatin modification of the Trefoil factor 1 gene in human breast cancer cells by the Ras/mitogen-activated protein kinase pathway

Manitoba Institute of Cell Biology, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
Cancer Research (Impact Factor: 9.28). 06/2006; 66(9):4610-6. DOI: 10.1158/0008-5472.CAN-05-4251
Source: PubMed

ABSTRACT Histone H3 phosphorylation is a downstream response to activation of the Ras/mitogen-activated protein kinase (MAPK) pathway. This modification is thought to have a role in chromatin remodeling and in the initiation of gene transcription. In MCF-7 breast cancer cells, we observed that phosphorylated histone H3 (phospho-H3) at Ser(10) but not Ser(28) increased with phorbol ester (12-O-tetradecanoylphorbol-13-acetate, TPA) treatment. Although phosphorylated extracellular signal-regulated kinase 1/2 levels in these cells cultured under estradiol deplete and replete conditions displayed no change, a significant induction was observed after TPA treatment. Furthermore, whereas both estradiol and TPA increased trefoil factor 1 (TFF1) mRNA levels in these cells, only TPA-induced and not estradiol-induced TFF1 expression was inhibited by the H3 kinase mitogen and stress activated protein kinase (MSK) inhibitor H89 and MAPK kinase inhibitor UO126, showing the involvement of the Ras/MAPK following TPA induction. Mutation of the activator protein 1 (AP-1) binding site abrogated the TPA-induced transcriptional response of the luciferase reporter gene under the control of the TFF1 promoter, showing the requirement for the AP-1 site. In chromatin immunoprecipitation assays, estradiol treatment resulted in the association of the estrogen receptor-alpha (ERalpha) and acetylated H3 with the TFF1 promoter. The levels of phospho-H3 and MSK1 associated with the TFF1 promoter were moderately increased. In the presence of TPA, whereas ERalpha was not bound to the promoter, a strong association of acetylated and/or phospho-H3, MSK1, and c-Jun was observed. These results show that although both stimuli lead to TFF1 gene activation, estradiol and TPA exert their effects on TFF1 gene expression by different mechanisms.

0 Followers
 · 
86 Views
  • Source
    Breast Cancer - Focusing Tumor Microenvironment, Stem cells and Metastasis, 12/2011; , ISBN: 978-953-307-766-6
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetics refers to mitotically and/or meiotically heritable variations in gene expression that are not caused by changes in DNA sequence. Epigenetic mechanisms regulate all biological processes from conception to death, including genome reprogramming during early embryogenesis and gametogenesis, cell differentiation and maintenance of a committed lineage. Key epigenetic players are DNA methylation and histone post-translational modifications, which interplay with each other, with regulatory proteins and with non-coding RNAs, to remodel chromatin into domains such as euchromatin, constitutive or facultative heterochromatin and to achieve nuclear compartmentalization. Besides epigenetic mechanisms such as imprinting, chromosome X inactivation or mitotic bookmarking which establish heritable states, other rapid and transient mechanisms, such as histone H3 phosphorylation, allow cells to respond and adapt to environmental stimuli. However, these epigenetic marks can also have long-term effects, for example in learning and memory formation or in cancer. Erroneous epigenetic marks are responsible for a whole gamut of diseases including diseases evident at birth or infancy or diseases becoming symptomatic later in life. Moreover, although epigenetic marks are deposited early in development, adaptations occurring through life can lead to diseases and cancer. With epigenetic marks being reversible, research has started to focus on epigenetic therapy which has had encouraging success. As we witness an explosion of knowledge in the field of epigenetics, we are forced to revisit our dogma. For example, recent studies challenge the idea that DNA methylation is irreversible. Further, research on Rett syndrome has revealed an unforeseen role for methyl-CpG-binding protein 2 (MeCP2) in neurons.
    Journal of Cellular Physiology 05/2009; 219(2):243-50. DOI:10.1002/jcp.21678 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase that serves as active link between extracellular signals and the primary response of gene expression. However, the involvement of MSK1 in malignant transformation and cancer development is not well understood. In this study, we aimed to explore the role of MSK1 in Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1)-promoted carcinogenesis of nasopharyngeal carcinoma (NPC). The level of MSK1 phosphorylation at Thr581 was detected by the immunohistochemical analysis in NPC tissues and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using MSK1 inhibitor H89 or small interfering RNA (siRNA)-MSK1, the effects of MSK1 on LMP1-promoted CNE1 cell proliferation and transformation were evaluated by CCK-8 assay, flow cytometry and focus-forming assay respectively. Furthermore, the regulatory role of MSK1-mediated histone H3 phosphorylation at Ser10 on the promoter activity and expression of Fra-1 or c-Jun was determined by reporter gene assay and western blotting analysis. Immunohistochemical analysis revealed that the level of MSK1 phosphorylation at Thr581 was significantly higher in the poorly differentiated NPC tissues than that in normal nasopharynx tissues (P < 0.001). Moreover, high level of phosphorylated MSK1 was positively correlated with the expression of LMP1 in NPC tissues (r = 0.393, P = 0.002) and cell lines. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA dramatically suppressed LMP1-promoted CNE1 cell proliferation, which was associated with the induction of cell cycle arrest at G0/G1 phase. In addition, the anchorage-independent growth promoted by LMP1 was blocked in MSK1 knockdown cells. When the activity or expression of MSK1 was inhibited, LMP1-induced promoter activities of Fra-1 and c-Jun as well as their protein levels were greatly reduced. It was found that only H3 WT, but not mutant H3 S10A, dramatically increased LMP1 induction of Fra-1 and c-Jun genes compared with mock cells. Increasing MSK1 activity is critically important for LMP1-promoted cell proliferation and transformation in NPC, which may be correlated with its induction of Fra-1 and c-Jun through phosphorylation of histone H3 at Ser10.
    BMC Cancer 05/2015; 15(1):390. DOI:10.1186/s12885-015-1398-3 · 3.32 Impact Factor

Preview

Download
0 Downloads