Sleeping beauty: a novel cancer gene discovery tool

Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
Human Molecular Genetics (Impact Factor: 6.68). 05/2006; 15 Spec No 1(suppl 1):R75-9. DOI: 10.1093/hmg/ddl061
Source: PubMed

ABSTRACT The National Cancer Institute and the National Human Genome Research Institute recently announced a 3-year 100-million-dollar pilot study to use large-scale resequencing of genes in human tumors to identify new cancer genes. The hope is that some of these genes can be used as drug targets for developing better therapeutics for treating cancer. Although this effort will identify new cancer genes, it could be made more efficient by preferentially resequencing genes identified as novel candidate cancer genes in animal models of cancer. Although retroviral insertional mutagenesis has proven to be an effective tool for identifying novel cancer genes in the mouse, these studies are limited by the fact that retroviral mutagenesis primarily induces hematopoietic and mammary cancer, but little else, while the majority of cancers affecting humans are solid tumors. Recently, two groups have shown that sleeping beauty (SB) transposon-based insertional mutagenesis can also identify novel candidate cancer genes in the mouse. Unlike retroviral infection, SB transposition can be controlled to mutagenize any target tissue and thus potentially induce many different kinds of cancer, including solid tumors. SB transposition in animal models of cancer could therefore greatly facilitate the identification of novel human cancer genes and the development of better cancer therapies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repeated DNA makes up a large fraction of a typical mammalian genome, and some repetitive elements are able to move within the genome (transposons and retrotransposons). DNA transposons move from one genomic location to another by a cut-and-paste mechanism. They are powerful forces of genetic change and have played a significant role in the evolution of many genomes. As genetic tools, DNA transposons can be used to introduce a piece of foreign DNA into a genome. Indeed, they have been used for transgenesis and insertional mutagenesis in different organisms, since these elements are not generally dependent on host factors to mediate their mobility. Thus, DNA transposons are useful tools to analyze the regulatory genome, study embryonic development, identify genes and pathways implicated in disease or pathogenesis of pathogens, and even contribute to gene therapy. In this review, we will describe the nature of these elements and discuss recent advances in this field of research, as well as our evolving knowledge of the DNA transposons most widely used in these studies.
    Current Genomics 04/2010; 11(2):115-28. DOI:10.2174/138920210790886871 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sleeping Beauty (SB) transposon is a Tc1/mariner family transposon that has been transpositionally inactive for over 10 million years. The SB transposon system was awakened from inactive Tc1-like transposable elements by using molecular phylogenetic data in 1997. Recent studies on its transposition efficiency and mechanism have shown its broad applications in vertebrate animals for gene-screening, gene transfer, and human gene therapy. In this review, we summarize our current knowledge of Sleeping Beauty, such as structure, transposition mechanism and potential applications, and bring forward some means aiming at the limitations of transposon technology.
    Hereditas (Beijing) 08/2007; 29(7):785-92.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The karyotypic chaos exhibited by human epithelial cancers complicates efforts to identify mutations critical for malignant transformation. Here we integrate complementary genomic approaches to identify human oncogenes. We show that activation of the ERK and phosphatidylinositol 3-kinase (PI3K) signaling pathways cooperate to transform human cells. Using a library of activated kinases, we identify several kinases that replace PI3K signaling and render cells tumorigenic. Whole genome structural analyses reveal that one of these kinases, IKBKE (IKKepsilon), is amplified and overexpressed in breast cancer cell lines and patient-derived tumors. Suppression of IKKepsilon expression in breast cancer cell lines that harbor IKBKE amplifications induces cell death. IKKepsilon activates the nuclear factor-kappaB (NF-kappaB) pathway in both cell lines and breast cancers. These observations suggest a mechanism for NF-kappaB activation in breast cancer, implicate the NF-kappaB pathway as a downstream mediator of PI3K, and provide a framework for integrated genomic approaches in oncogene discovery.
    Cell 07/2007; 129(6):1065-79. DOI:10.1016/j.cell.2007.03.052 · 33.12 Impact Factor