Biochemical staging of synucleinopathy and amyloid deposition in dementia with Lewy bodies.

Inserm Unit 815, Lille, France.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.35). 04/2006; 65(3):278-88. DOI: 10.1097/01.jnen.0000205145.54457.ea
Source: PubMed

ABSTRACT The primary feature of dementia with Lewy bodies (DLB) is the aggregation of alpha-synuclein into characteristic lesions: Lewy bodies (LBs) and Lewy neurites. However, in most of DLB cases, LBs are associated with neurofibrillary tangles and amyloid plaques (both Alzheimer disease [AD]-related lesions). We wanted to determine if this overlap of lesions is statistical, as a result of the late onset of both diseases, or results from a specific physiopathological synergy between synucleinopathy and either tauopathy or amyloid pathology. All patients with DLB from our prospective and multidisciplinary study were analyzed. These cases were compared with cases with pure AD and patients with Parkinson disease and controls. All cases were analyzed thoroughly at the neuropathologic and biochemical levels with a biochemical staging of aggregated alpha-synuclein, tau, and Abeta species. All sporadic cases of DLB were associated with abundant deposits of Abeta x-42 that were similar in quality and quantity to those of AD. Amyloid precursor protein (APP) dysfunction is a risk factor for AD as demonstrated by pathogenic mutations and Abeta accumulation. The constant and abundant Abeta x-42 deposition in sporadic DLB suggests that synucleinopathy is also promoted by APP dysfunction. Therefore, we conclude that APP is a therapeutic target for both AD and DLB.

  • Source
    Dataset: SPECT
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dementia with Lewy bodies (DLB) is pathologically characterized by α-synuclein aggregates in the brain. Most patients with DLB also show cerebral Alzheimer disease-type pathology (i.e. β-amyloid plaques and hyperphosphorylated tau deposits). It is unclear whether this overlap is coincidental or driven by specific regional or cellular interactions. The aims of this study were to investigate the regional convergence of α-synuclein, tau, and β-amyloid and to identify patterns of cellular co-occurrence of tau and α-synuclein in DLB. The study group consisted of 22 patients who met clinical and neuropathologic criteria for DLB. Protein aggregates were assessed semiquantitatively in 17 brain areas. APOE and MAPT genotypes were determined. Cellular co-occurrence of tau and α-synuclein was evaluated by double immunofluorescence. We found that total β-amyloid pathology scores correlated positively with total α-synuclein pathology scores (ρ = 0.692, p = 0.001). The factors that correlated best with the amount of α-synuclein pathology were the severity of β-amyloid pathology and presence of the MAPT H1 haplotype. Tau and α-synuclein frequently colocalized in limbic areas, but no correlation between total pathology scores was observed. This study confirms and extends the role of β-amyloid deposition and the MAPT H1 haplotype as contributing factors in DLB pathogenesis and demonstrates the confluence of multiple agents in neurodegenerative diseases.
    Journal of neuropathology and experimental neurology. 11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lewy body and Alzheimer-type pathologies often co-exist. Several studies suggest a synergistic relationship between amyloid-β (Aβ) and α-synuclein (α-syn) accumulation. We have explored the relationship between Aβ accumulation and the phosphorylation of α-syn at serine-129 (pSer129 α-syn), in post-mortem human brain tissue and in SH-SY5Y neuroblastoma cells transfected to overexpress human α-syn. We measured levels of Aβ40, Aβ42, α-syn and pSer129 α-syn by sandwich enzyme-linked immunosorbent assay, in soluble and insoluble fractions of midfrontal, cingulate and parahippocampal cortex and thalamus, from cases of Parkinson's disease (PD) with (PDD; n = 12) and without dementia (PDND; n = 23), dementia with Lewy bodies (DLB; n = 10) and age-matched controls (n = 17). We also examined the relationship of these measurements to cognitive decline, as measured by time-to-dementia and the mini-mental state examination (MMSE) score in the PD patients, and to Braak tangle stage. In most brain regions, the concentration of insoluble pSer129 α-syn correlated positively, and soluble pSer129 α-syn negatively, with the levels of soluble and insoluble Aβ. Insoluble pSer129 α-syn also correlated positively with Braak stage. In most regions, the levels of insoluble and soluble Aβ and the proportion of insoluble α-syn that was phosphorylated at Ser129 were significantly higher in the PD and DLB groups than the controls, and higher in the PDD and DLB groups than the PDND brains. In PD, the MMSE score correlated negatively with the level of insoluble pSer129 α-syn. Exposure of SH-SY5Y cells to aggregated Aβ42 significantly increased the proportion of α-syn that was phosphorylated at Ser129 (aggregated Aβ40 exposure had a smaller, non-significant effect). Together, these data show that the concentration of pSer129 α-syn in brain tissue homogenates is directly related to the level of Aβ and Braak tangle stage, and predicts cognitive status in Lewy body diseases.
    Alzheimer's Research and Therapy 01/2014; 6(5-8):77. · 4.39 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014