Article

Isolation and Initial Characterization of Constitutive Nitrate Reductase-Deficient Mutants NR328 and NR345 of Soybean (Glycine max).

Botany Department, Australian National University, Canberra ACT 2600, Australia.
Plant physiology (Impact Factor: 6.56). 07/1986; 81(2):572-6. DOI: 10.1104/pp.81.2.572
Source: PubMed

ABSTRACT Two nitrate reductase deficient mutants of soybean (Glycine max [L.] Merr. cv Bragg) were isolated from approximately 10,000 M(2) seedlings, using a direct enzymic assay in microtiter plates. Stable inheritance of NR345 and NR328 phenotypes has been demonstrated through to the M(5) generation. Both mutants were affected in constitutive nitrate reductase activity. Assayable activities of cNR in nitrate-free grown seedlings was about 3 to 4% of the control for NR345 and 14 to 16% of the control for NR328. Both mutants expressed inducible NR during early plant development and were sensitive to nitrate and urea inhibition of nodulation. These new mutants will allow an extension of the characterization of nitrate reductases and their function in soybean. Preliminary evidence indicates that NR345 is similar to the previously isolated mutant nr(1), while NR328 is different.

0 Bookmarks
 · 
43 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lowlands comprise 87% of the 145 M ha of world rice area. Lowland rice-based cropping systems are characterized by soil flooding during most of the rice growing season. Rainfall distribution, availability of irrigation water and prevailing temperatures determine when rice or other crops are grown. Nitrogen is the most required nutrient in lowland rice-based cropping systems. Reducing fertilizer N use in these cropping systems, while maintaining or enhancing crop output, is desirable from both environmental and economic perspectives. This may be possible by producing N on the land through legume biological nitrogen fixation (BNF), minimizing soil N losses, and by improved recycling of N through plant residues. At the end of a flooded rice crop, organic- and NHa-N dominate in the soil, with negligible amounts of NO 3. Subsequent drying of the soil favors aerobic N transformations. Organic N mineralizes to NH4, which is rapidly nitrified into NO 3. As a result, NO 3 accumulates in soil during the aerobic phase. Recent evidence indicates that large amounts of accumulated soil NO 3 may be lost from rice lowlands upon the flooding of aerobic soil for rice production. Plant uptake during the aerobic phase can conserve soil NO 3 from potential loss. Legumes grown during the aerobic phase additionally capture atmospheric N through BNF. The length of the nonflooded season, water availability, soil properties, and prevailing temperatures determine when and where legumes are, or can be, grown. The amount of N derived by legumes through BNF depends on the interaction of microbial, plant, and environmental determinants. Suitable legumes for lowland rice soils are those that can deplete soil NO 3 while deriving large amounts of N through BNF. Reducing soil N supply to the legume by suitable soil and crop management can increase BNF. Much of the N in legume biomass might be removed from the land in an economic crop produce. As biomass is removed, the likelihood of obtaining a positive soil N balance diminishes. Nonetheless, use of legumes rather than non-legumes is likely to contribute higher quantities of N to a subsequent rice crop. A whole-system approach to N management will be necessary to capture and effectively use soil and atmospheric sources of N in the lowland rice ecosystem.
    Plant and Soil 01/1992; 141:69-91. · 3.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.
    Plant and Soil 01/1992; 141(1):13-39. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Root development is remarkably sensitive to variations in the supply and distribution of inorganic nutrients in the soil. Here we review examples of the ways in which nutrients such as N, P, K and Fe can affect developmental processes such as root branching, root hair production, root diameter, root growth angle, nodulation and proteoid root formation. The nutrient supply can affect root development either directly, as a result of changes in the external concentration of the nutrient, or indirectly through changes in the internal nutrient status of the plant. The direct pathway results in developmental responses that are localized to the part of the root exposed to the nutrient supply; the indirect pathway produces systemic responses and seems to depend on long-distance signals arising in the shoot. We propose the term `trophomorphogenesis' to describe the changes in plant morphology that arise from variations in the availability or distribution of nutrients in the environment. We discuss what is currently known about the mechanisms of external and internal nutrient sensing, the possible nature of the long-distance signals and the role of hormones in the trophomorphogenic response.
    Plant and Soil 01/2001; 232(1):51-68. · 3.24 Impact Factor

Full-text

View
0 Downloads
Available from