Association of PP1 with its regulatory subunit AKAP149 is regulated by serine phosphorylation flanking the RVXF motif of AKAP149

Department of Biochemistry, University of Oslo, Kristiania (historical), Oslo, Norway
Biochemistry (Impact Factor: 3.02). 05/2006; 45(18):5868-77. DOI: 10.1021/bi060066s
Source: PubMed

ABSTRACT Reformation of the nuclear envelope at the end of mitosis involves the recruitment of the B-type lamin phosphatase PP1 to nuclear membranes by A-kinase anchoring protein AKAP149. PP1 remains associated to AKAP149 throughout G1 but dissociates from AKAP149 when AKAP149 is phosphorylated at the G1/S transition. We examine here the role of phosphorylation of serines flanking the RVXF PP1-binding motif of AKAP149, on PP1 anchoring. The use of AKAP149 peptides encompassing the RVXF motif and five flanking serines, either wild type (wt) or bearing S-->A or S-->D mutations, specifically shows that phosphorylation of S151 or S159 abolishes PP1 binding to immobilized AKAP149. Peptides with S151 or S159 as the only wt serine residue trigger dissociation of PP1 from immunoprecipitated AKAP149, whereas S151/159D mutants are ineffective. Furthermore, immunoprecipitated AKAP149 from purified G1-phase nuclear envelopes binds PKA and PKC in overlay assays. PKA binding to AKAP149 in vitro is unaffected by the presence of PKC or PP1, and similarly, PKC binding is independent of PKA or PP1. The immunoprecipitated AKAP149 complex contains PKA and PKC activities. Both AKAP149-associated PKA and PKC serine-phosphorylate immunoprecipitated AKAP149 in vitro; however, only PKC-mediated phosphorylation promotes dissociation of PP1 from the AKAP. The results suggest a putative temporally and spatially controlled mechanism promoting release of PP1 from AKAP149. AKAP149 emerges as a scaffolding protein for multiple protein kinases and phosphatases that may be involved in the integration of intracellular signals that converge at the nuclear envelope.

Download full-text


Available from: Thomas Küntziger, Sep 27, 2015
17 Reads
  • Source
    • "As well, at the end of mitosis, mitotic sites are dephosphorylated, and the nuclear envelope assembles again to encircle the decondensing chromatin. Some evidence has suggested that type 1 protein phosphatase (PP1) is the major mitotic lamin phosphatase responsible for removal of mitotic phosphates [25]–[26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S(25)E, S(45)E, T(435)E, S(595)E). We also analyzed lamin C (A-type) and its mutant S(37)E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R(64)H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S(45)E mutant was insoluble, in contrast to lamin C S(37)E. Lamin Dm T(435)E (C-terminal cdc2 site) and R(64)H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S(45)E and T(435)E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T(435)E was cytoplasmic and showed higher mobility in FRAP assay.
    PLoS ONE 02/2012; 7(2):e32649. DOI:10.1371/journal.pone.0032649 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported that N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl] thiourea (2) was a high affinity antagonist of the vanilloid receptor with a binding affinity of K(i)=63 nM and an antagonism of K(i)=53.9 nM in rat VR1 heterologously expressed in Chinese hamster ovary (CHO) cells (Mol. Pharmacol. 2002, 62, 947-956). In an effort to further improve binding affinity and antagonistic potency, we have modified the C-region of the lead 4-t-butylbenzyl group with diverse surrogates, such as araalkyl, alkyl, 4-alkynylbenzyl, indanyl, 3,3-diarylpropyl, 4-alkoxybenzyl, 4-substituted piperazine and piperidine. The lipophilic surrogates, arylalkyl and alkyl, conferred modest decreases in binding affinities and antagonistic potencies; the groups having heteroatoms resulted in dramatic decreases. Our findings indicate that 4-t-butylbenzyl is one of the most favorable groups for high receptor binding and potent antagonism to VR1 in this structural series.
    Bioorganic & Medicinal Chemistry 02/2004; 12(2):371-85. DOI:10.1016/j.bmc.2003.10.047 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A-Kinase anchoring proteins (AKAPs) control the subcellular localization and temporal specificity of protein phosphorylation mediated by cAMP-dependent protein kinase. AKAP149 (AKAP1) is found in mitochondria and in the endoplasmic reticulum-nuclear envelope network where it anchors protein kinases, phosphatases, and a phosphodiesterase. AKAP149 harbors in its COOH-terminal part one KH and one Tudor domain, both known to be involved in RNA binding. We investigated the properties of the COOH-terminal domain of AKAP149. We show here that AKAP149 is a self-associating protein with RNA binding features. The KH domain of AKAP149 is sufficient for self-association in a RNA-dependent manner. The Tudor domain is not necessary for self-association, but it is required together with the KH domain for targeting to well-defined nuclear foci. These foci are spatially closely related to nucleolar subcompartments. We also show that the KH-Tudor-containing domain of AKAP149 binds RNA in vitro and in RNA coprecipitation experiments. AKAP149 emerges as a scaffolding protein involved in the integration of intracellular signals and possibly in RNA metabolism.
    Biochemistry 01/2007; 45(50):14980-9. DOI:10.1021/bi061418y · 3.02 Impact Factor
Show more