Article

Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients.

Department of Internal Medicine and Molecular Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
Molecular and Cellular Biochemistry (Impact Factor: 2.39). 06/2007; 299(1-2):19-22. DOI: 10.1007/s11010-005-9031-4
Source: PubMed

ABSTRACT Oxidized low density lipoprotein (LDL) (Ox-LDL) plays an important role in the pathogenesis of atherosclerosis. Oxidized LDL is taken up by macrophages via scavenger receptors. CD36 is an 88 kDa glycoprotein expressed on platelets, monocyte-macrophages, microvascular endothelial cells, adipose tissue, skeletal muscles and heart. We found patients with CD36 deficiency and identified several mutations in the CD36 gene. We also reported that CD36-deficient macrophages showed a 50% reduction in the binding of Ox-LDL, suggesting that CD36 is one of the major receptors for Ox-LDL. CD36 was expressed on macrophages in the atherosclerotic lesions of human aorta and coronary arteries especially on foamed macrophages. The distribution of CD36 expression was slightly different from that of scavenger receptor class A types I and II. The expression of CD36 on macrophages was up-regulated by Ox-LDL and down-regulated by interferon gamma. Since CD36 is a transporter of long-chain fatty acids (LCFA), CD36-deficient patients showed a defect in the uptake of an LCFA analog, BMIPP, by the heart. Furthermore, the secretion of IL-1beta and TNF-alpha from monocyte-derived macrophages induced by Ox-LDL was markedly reduced and the activation of NF-kappaB was attenuated in CD36-deficient subjects compared with controls, suggesting that CD36-mediated signaling is also impaired in CD36 deficiency. To elucidate the roles of CD36 in vivo, we characterized the clinical profile of CD36-deficient patients. Most of them were accompanied by hyperlipidemia (mainly hypertriglyceridemia), increased remnant lipoproteins and mild elevation of fasting plasma glucose level and blood pressure. Glucose clamp technique revealed mean whole body glucose uptake was reduced in CD36-deficient patients, indicating the presence of insulin resistance. The frequency of CD36 deficiency was higher in patients with coronary heart disease (CHD) than in control subjects. Taken together, CD36 deficiency is accompanied by (1) hyperlipidemia and increased remnant lipoproteins, (2) impaired glucose metabolism based upon insulin resistance, and (3) mild hypertension, and comprises one of the genetic backgrounds of the metabolic syndrome, leading to the development of CHD.

0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activation of peroxisome proliferator-activated receptor (PPAR)-α which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPARα activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPARα activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPARα agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and production of CO(2) and acid soluble metabolites in enterocytes. Moreover, bezafibrate treatment suppressed postprandial lipidemia after oral administration of olive oil to the mice. These findings indicate that PPARα activation suppresses postprandial lipidemia through enhancement of fatty acid oxidation in enterocytes, suggesting that intestinal lipid metabolism regulated by PPARα activity is a novel target of PPARα agonist for decreasing circulating levels of lipids under postprandial conditions.
    Biochemical and Biophysical Research Communications 06/2011; 410(1):1-6. DOI:10.1016/j.bbrc.2011.05.057 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long chain fatty acids (LCFAs) provide 70-80% of the energy for cardiac contractile activity. LCFAs are also essential for many other cellular functions, such as transcriptional regulation of proteins involved in lipid metabolism, modulation of intracellular signalling pathways, and as substrates for membrane constituents. When LCFA uptake exceeds the capacity for their cardiac utilization, the intracellular lipids accumulate and are thought to contribute to contractile dysfunction, arrhythmias, cardiac myocyte apoptosis and congestive heart failure. Moreover, increased cardiac myocyte triacylglycerol, diacylglycerol and ceramide depots are cardinal features associated with obesity and type 2 diabetes. In recent years considerable evidence has accumulated to suggest that, the rate of entry of long chain fatty acids (LCFAs) into the cardiac myocyte is a key factor contributing to a) regulating cardiac LCFA metabolism and b) lipotoxicity in the obese and diabetic heart. In the present review we i) examine the evidence indicating that LCFA transport into the heart involves a protein-mediated mechanism, ii) discuss the proteins involved in this process, including FAT/CD36, FABPpm and FATP1, iii) discuss the mechanisms involved in regulating LCFA transport by some of these proteins (including signaling pathways), as well as iv) the possible interactions of these proteins in regulating LCFA transport into the heart. In addition, v) we discuss how LCFA transport and transporters are altered in the obese/diabetic heart.
    Current Cardiology Reviews 02/2008; 4(1):12-21. DOI:10.2174/157340308783565429
  • Source