Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer

Department of Molecular Genetics and Microbiology, School of Medicine, Health Sciences Center, University of New Mexico, Albuquerque, NM 87111, USA.
Journal of Clinical Microbiology (Impact Factor: 4.23). 06/2006; 44(5):1755-62. DOI: 10.1128/JCM.44.5.1755-1762.2006
Source: PubMed

ABSTRACT Integration of human papillomavirus type 16 (HPV-16) into the host DNA has been proposed as a potential marker of cervical neoplastic progression. In this study, a quantitative real-time PCR (qRT-PCR) was used to examine the physical status of HPV-16 in 126 cervical carcinoma in situ and 92 invasive cervical cancers. Based on criteria applied to results from this qRT-PCR assay, HPV-16 was characterized in carcinoma in situ cases as episomal (61.9%), mixed (i.e., episomal and integrated; 29.4%), and integrated (8.7%) forms. In invasive cervical cancer samples, HPV-16 was similarly characterized as episomal (39.1%), mixed (45.7%), and integrated (15.2%) forms. The difference in the frequency of integrated or episomal status estimated for carcinoma in situ and invasive cervical cancer cases was statistically significant (P = 0.003). Extensive mapping analysis of HPV-16 E1 and E2 genes in 37 selected tumors demonstrated deletions in both E1 and E2 genes with the maximum number of losses (78.4%) observed within the HPV-16 E2 hinge region. Specifically, deletions within the E2 hinge region were detected most often between nucleotides (nt) 3243 and 3539. The capacity to detect low-frequency HPV-16 integration events was highly limited due to the common presence and abundance of HPV episomal forms. HPV-16 E2 expressed from intact episomes may act in trans to regulate integrated genome expression of E6 and E7.

Download full-text


Available from: Hugo Arias-Pulido, Jun 20, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The persistent infection with high risk human papillomaviruses (hrHPV) is a necessary risk factor for the development of cervical cancer, which is the second most frequent cancer in women worldwide. Cisplatin-based radiotherapy represents the current treatment regimen. However, the results for advanced and recurrent disease are far from optimal. Since almost all cervical cancers contain wild type (wt) p53, which is degraded by the complex of hrHPV E6 and the ubiquitin ligase E6AP, we addressed if the reconstitution of p53 via silencing of E6AP sensitizes cervical cancer cells towards cisplatin treatment. For this we established and characterized two novel cervical cancer cell lines that contain integrated HPV16 genomes. Long-term established HeLa and SiHa cells and the novel cervical cancer cell lines at low passage numbers were treated with different concentrations of cisplatin. Cell viability was measured by the WST-1 assay. In addition, single cisplatin treatment was combined with the silencing of E6AP or p53. The comparison to HeLa and SiHa cells revealed a higher sensitivity of the novel cell lines to cisplatin treatment, which caused p53 accumulation and transcriptional induction of p21. Silencing of E6AP further increased p53 protein levels, but had no effect on cell viability when combined with cisplatin treatment. Interestingly, silencing of p53 had also no effect. We therefore conclude that reactivation of p53 via silencing of E6AP does not increase the sensitivity of cervical cancer cells towards cisplatin treatment.
    American Journal of Cancer Research 01/2012; 2(3):309-21. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Persistent infection with a high risk (hr) human papillomavirus (HPV) has been established as the main cause of cervical cancer and high-grade cervical intraepithelial neoplasia (CIN3). Because most infections are transient, testing for hrHPV lacks specificity and has a low positive predictive value. It has been suggested that additional parameters like viral load and physical status of the viral genome could improve the effectiveness of HPV-based screening. We investigated the association between HPV16 viral load and physical state with viral persistence or risk of incident CIN3 or worse in a population-based prospective cohort study comprising 8656 women (20-29 years). All participants had two gynecological examinations two years apart and were followed through the nationwide Danish Pathology Data Bank (median follow-up: 12.9 yrs). Seventynine cervical swabs from women with a persistent HPV16 infection were available for analysis. For comparison we selected a random age-matched sample of transiently HPV16 infected women (N=91). Persistently infected women with incident CIN3 or cancer (CIN3+; N=31) were compared to women with normal cytology during follow up (non-progressors; N=39). Quantitative real-time PCR for HPV16E6, E2 and IFNb1 was done to determine the HPV16 viral load and the E2/E6 ratio was used as a surrogate marker for integration. Women with normal cytology who became persistently HPV16 infected had a significantly lower HPV16 load at baseline than women who cleared the infection (median 4.72 copies/cell versus median 20.0 copies/cell, respectively; p=0.0003). There was no difference in viral load at enrollment between women who progressed to CIN3+ and women who stayed cytologically normal (p=0.85). At the second examination viral load tended to be higher in women who progressed, but the difference was not statistically significant (p=0.39). The E2/E6 ratio was shown to be lower in the persistently infected group (p<0.0001) already at the first examination, but no difference between non-progressors and CIN3+ cases was observed at any of the two examinations (p=0.61 and 0.86). Lower viral load and integration of the viral genome are predictive for the persistence of HPV16 DNA, but not for the progression of a persistent HPV16 infection to CIN3+ in women with normal cytology.
    American Journal of Cancer Research 01/2011; 2(2):192-203. · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypothesis that cervical cancers (CaCx) harbor high HPV16 viral load compared to controls and this is influenced by E2 status and age of subjects. Viral load (natural log transformed values) per 100ng genomic DNA was estimated (152 cases and 87 controls) by Taqman assay. Median viral load was significantly higher (Mann-Whitney U test) among cases (17.21) compared to controls (9.86), irrespective of E2 status or upon considering E2 status as a covariate in logistic regression model (p<0.001). Viral load of E2 intact cases (17.80) was significantly higher (p<0.001) compared to those with disrupted E2 (9.78). At equivalent probability of being a case, viral load was higher among individuals (i) of lower age, irrespective of E2 status, and (ii) with intact E2 but of similar age as those with disrupted E2. Thus viral load in association with E2 status and/or age might be of causal relevance in CaCx pathogenesis.
    Virology 06/2010; 402(1):197-202. DOI:10.1016/j.virol.2010.03.030 · 3.28 Impact Factor