Article

Convenient structural analysis of glycosphingolipids using MALDI-QIT-TOF mass spectrometry with increased laser power and cooling gas flow.

Sphingolipid Expression Laboratory, RIKEN Frontier Research System, Wako, Saitama 351-0198.
Journal of Biochemistry (Impact Factor: 3.07). 05/2006; 139(4):771-7. DOI: 10.1093/jb/mvj090
Source: PubMed

ABSTRACT Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) was applied to the structural characterization of neutral glycosphingolipids. Lithium adduct ions of glycosphingolipids were analyzed using MALDI-QIT-TOF MS under strong conditions of increased laser power and cooling gas flow. The relative intensities of fragment ions were increased under the strong conditions, and the resulting spectra revealed the presence of oligosaccharide ions fragmented from the glycosphingolipids. Consequently, the oligosaccharide sequences of the glycosphingolipids were readily obtained. To obtain more detailed structural information, MS/MS (MS2) and MS/MS/MS (MS3) analyses were performed with selection of the lactosylceramide and ceramide ions, respectively. The resulting data were sufficient to determine the structures of both the oligosaccharide and the ceramide moiety of each glycosphingolipid. The fragmentation patterns of MS2 and MS3 for Forssman glycolipid under the strong conditions were comparable to those of MS3 and MS4 obtained under standard conditions, respectively. Thus, MALDI-QIT-TOF MS with increased laser power and cooling gas flow is a convenient method for glycosphingolipid analysis.

0 Bookmarks
 · 
75 Views
  • Source
    Chemical Reviews 09/2011; 111(10):6387-422. · 41.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four types of neutral glycosphingolipids (LacCer, Gb3Cer, Gb4Cer, and IV3αGalNAc-Gb4Cer; 10 pmol each) were analyzed using high-performance liquid chromatography (HPLC)-electrospray ionization quadrupole ion trap time-of-flight (ESI-QIT-TOF) mass spectrometry (MS) with a repeated high-speed polarity and MSn switching system. This system can provide six types of mass spectra, including positive and negative ion MS, MS2, and MS3 spectra, within 1 s per cycle. Using HPLC with a normal-phase column, information on the molecular weights of major molecular species of four neutral glycosphingolipids was obtained by detecting [M+Na]+ in the positive ion mode mass spectra and [M−H]− in the negative ion mode mass spectra. Sequences of glycosphingolipid oligosaccharide were obtained in the negative ion MS2 spectra. In addition, information on the ceramide structures was clearly obtained in the negative ion MS3 mass spectra. GlcCer molecular species were analyzed by HPLC-ESI-QIT-TOF MS with a reversed-phase column using 1 pmole of GlcCer. The structures of the seven molecular species of GlcCer, namely, d18:1-C16:0, d18:1-C18:0, d18:1-C20:0, d18:1-C22:0, d18:1-C23:0, d18:1-C24:1, and d18:1-C24:0, were characterized using positive ion MS and negative ion MS, MS2, and MS3. The established HPLC-ESI-QIT-TOF MS with MSn switching and a normal phase column has been successfully applied to the structural characterization of LacCer and Gb4Cer in a crude mixture prepared from human erythrocytes.
    Glycoconjugate Journal 12/2013; 30(9). · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS.
    Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 05/2011; 879(17-18):1166-79. · 2.78 Impact Factor