Article

Viral ecology and the maintenance of novel host use.

Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA.
The American Naturalist (Impact Factor: 4.45). 04/2006; 167(3):429-39. DOI: 10.1086/499381
Source: PubMed

ABSTRACT Viruses can occasionally emerge by infecting new host species. However, the early phases of emergence can hinge upon ecological sustainability of the virus population, which is a product of both within-host population growth and between-host transmission. Insufficient growth or transmission can force virus extinction before the latter phases of emergence, where genetic adaptations that improve host use may occur. We examined the early phase of emergence by studying the population dynamics of RNA phages in replicated laboratory environments containing native and novel host bacteria. To predict the breadth of transmission rates allowing viral persistence on each species, we developed a simple model based on in vitro data for phage growth rate over a range of initial population densities on both hosts. Validation of these predictions using serial passage experiments revealed a range of transmission rates for which the native host was a source and the novel host was a sink. In this critical range of transmission rates, periodic exposure to the native host was sufficient for the maintenance of the viral population on the novel host. We argue that this effect should facilitate adaptation by the virus to utilize the novel host--often crucial in subsequent phases of emergence.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The white spot syndrome virus (WSSV) is a lethal and contagious pathogen for penaeid shrimp and a growing number of other crustacean species. To date, there are no effective prophylactic or therapeutic treatments commercially available to interfere with the occurrence and spread of the disease. In addition, the significance of alternative vectors on the dispersal of this disease has been largely ignored and therefore the ecological dynamics of the WSSV is still poorly understood and difficult to ascertain. Thus, an important issue that should be considered in sanitary programmes and management strategies is the identification of species susceptible to infection by WSSV. The results obtained provide the first direct evidence of ongoing WSSV replication in experimentally infected specimens of the tidepool shrimp Palaemon ritteri. Viral replication was detected using a validated set of primers for the amplification by RT-PCR of a 141 bp fragment of the transcript encoding the viral protein VP28. It is therefore conceivable that this shrimp may play a significant role in the dispersal of WSSV.
    Journal of Fish Diseases 06/2014; · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to limit the impact of the recent pandemics ignited by viral host jumps, it is necessary to better understand the ecological and evolutionary factors influencing the early steps of emergence and the interactions between them. Antagonistic pleiotropy, that is, the negative fitness effect in the primary host of mutations allowing the infection of and the multiplication in a new host, has long been thought to be the main limitation to the evolution of generalist viruses and thus to emergence. However, the accumulation of experimental examples contradicting the hypothesis of antagonistic pleiotropy has highlighted the importance of other factors such as the epistasis between mutations increasing the adaptation to a new host. Epistasis is pervasive in viruses, affects the shape of the adaptive landscape and consequently the accessibility of evolutionary pathways. Finally, recent studies have gone steps further in the complexity of viral fitness determinism and stressed the potential importance of the epistatic pleiotropy and of the impact of host living conditions.
    Current Opinion in Virology 11/2014; 10:1-6. · 6.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Phi6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Phi6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.
    PLoS ONE 12/2014; 9:e113078. · 3.53 Impact Factor

Full-text (2 Sources)

Download
58 Downloads
Available from
May 20, 2014