Article

X-ray, neutron and NMR studies of the catalytic mechanism of aspartic proteinases.

School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, England.
European Biophysics Journal (Impact Factor: 2.27). 10/2006; 35(7):559-66. DOI: 10.1007/s00249-006-0065-7
Source: PubMed

ABSTRACT Current proposals for the catalytic mechanism of aspartic proteinases are largely based on X-ray structures of bound oligopeptide inhibitors possessing non-hydrolysable analogues of the scissile peptide bond. Until recent years, the positions of protons on the catalytic aspartates and the ligand in these complexes had not been determined with certainty due to the inadequate resolution of these analyses. There has been much interest in locating the catalytic protons at the active site of aspartic proteinases since this has major implications for detailed understanding of the mechanism of action and the design of improved transition state mimics for therapeutic applications. In this review we discuss the results of studies which have shed light on the locations of protons at the catalytic centre. The first direct determination of the proton positions stemmed from neutron diffraction data collected from crystals of the fungal aspartic proteinase endothiapepsin bound to a transition state analogue (H261). The neutron structure of the complex at a resolution of 2.1 A provided evidence that Asp 215 is protonated and that Asp 32 is the negatively charged residue in the transition state complex. Atomic resolution X-ray studies of inhibitor complexes have corroborated this finding. A similar study of the native enzyme established that it, unexpectedly, has a dipeptide bound at the catalytic site which is consistent with classical reports of inhibition by short peptides and the ability of pepsins to catalyse transpeptidation reactions. Studies by NMR have confirmed the findings of low-barrier and single-well hydrogen bonds in the complexes with transition state analogues.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structure-based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein-bound library member(s) by saturation-transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.
    Angewandte Chemie International Edition 02/2014; · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review, information regarding substrate and site specificities, catalytic mechanism, and protonation states of the catalytic Asp dyad of β-secretase (BACE1) derived from computational studies has been discussed. BACE1 catalyzes the rate-limiting step in the generation of Alzheimer amyloid beta peptide through the proteolytic cleavage of the amyloid precursor protein. Due to its biological functioning, this enzyme has been considered as one of the most important targets for finding the cure for Alzheimer's disease. Molecular dynamics (MD) simulations suggested that structural differences in the key regions (inserts A, D, and F and the 10s loop) of the enzyme are responsible for the observed difference in its activities towards the WT- and SW-substrates. The modifications in the flap, third strand, and insert F regions were found to be involved in the alteration in the site specificity of the glycosylphosphatidylinositol bound form of BACE1. Our QM and QM/MM calculations suggested that BACE1 hydrolyzed the SW-substrate more efficiently than the WT-substrate and that cleavage of the peptide bond occurred in the rate-determining step. The results from molecular docking studies showed that the information concerning a single protonation state of the Asp dyad is not enough to run an in silico screening campaign.
    Scientifica. 01/2014; 2014:598728.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cells of Candida albicans (C. albicans ) can invade hu- mans and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. In this context, both the host immune status and the ability of C. albicans to modulate the expression of its virulence factors are relevant aspects that drive the candidal susceptibility or resistance; in this last case, culminat- ing in the establishment of successful infection known as candidiasis. C. albicans possesses a potent arma- mentarium consisting of several virulence molecules that help the fungal cells to escape of the host immune responses. There is no doubt that the secretion of aspartyl-type proteases, designated as Saps, are one of the major virulence attributes produced by C. albicans cells, since these hydrolytic enzymes participate in a wide range of fungal physiological processes as well as in different facets of the fungal-host interactions. For these reasons, Saps clearly hold promise as new potential drug targets. Corroborating this hypothesis, the introduction of new anti-human immunodeficiency virus drugs of the aspartyl protease inhibitor-type (HIV PIs) have emerged as new agents for the inhibition of Saps. The introduction of HIV PIs has revolutionized the treatment of HIV disease, reducing opportunistic infections, especially candidiasis. The attenuation of candidal infections in HIV-infected individuals might not solely have resulted from improved immunologi- cal status, but also as a result of direct inhibition of C. albicans Saps. In this article, we review updates on the beneficial effects of HIV PIs against the human fungal pathogen C. albicans , focusing on the effects of these compounds on Sap activity, growth behavior, morphological architecture, cellular differentiation, fungal adhesion to animal cells and abiotic materials, modulation of virulence factors, experimental candidia- sis infection, and their synergistic actions with classical antifungal agents.

Full-text

Download
75 Downloads
Available from
May 27, 2014