Crystal structure of the human monocyte-activating receptor, "Group 2" leukocyte Ig-like receptor A5 (LILRA5/LIR9/ILT11)

Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2006; 281(28):19536-44. DOI: 10.1074/jbc.M603076200
Source: PubMed

ABSTRACT Human leukocyte Ig-like receptor B1 (LILRB1) and B2 (LILRB2) belong to "Group 1" receptors and recognize a broad range of major histocompatibility complex class I molecules (MHCIs). In contrast, "Group 2" receptors show low similarity with LILRB1/B2, and their ligands remain to be identified. To date, the structural and functional characteristics of Group 2 LILRs are poorly understood. Here we report the crystal structure of the extracellular domain of LILRA5, which is an activating Group 2 LILR expressed on monocytes and neutrophils. Unexpectedly, the structure showed large changes in structural conformation and charge distribution in the region corresponding to the MHCI binding site of LILRB1/B2, which are also distinct from killer cell Ig-like receptors and Fc alpha receptors. These changes probably confer the structural hindrance for the MHCI binding, and their key amino acid substitutions are well conserved in Group 2 LILRs. Consistently, the surface plasmon resonance and flow cytometric analyses demonstrated that LILRA5 exhibited no affinities to all tested MHCIs. These results raised the possibility that LILRA5 as well as Group 2 LILRs do not play a role in any MHCI recognition but could possibly bind to non-MHCI ligand(s) on the target cells to provide a novel immune regulation mechanism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HLA abnormalities on tumour cells for immune escape have been widely described. In addition, cellular components of the tumour microenvironment, in particular myeloid derived suppressor cells (MDSC) and alternatively activated M2 tumour-associated macrophages (TAMs), are involved in tumour promotion, progression, angiogenesis and suppression of anti-tumour immunity. However, the role of HLA in these activities is poorly understood. This review details MHC class I characteristics and describes MHC class I receptors functions. This analysis established the basis for a reflection about the crosstalk among the tumour cells, the TAMs and the cells mediating an immune response.The tumour cells and TAMs exploit MHC class I molecules to modulate the surrounding immune cells. HLA A, B, C and G molecules down-regulate the macrophage myeloid activation through the interaction with the inhibitory LILRB receptors. HLA A, B, C are able to engage inhibitory KIR receptors negatively regulating the Natural Killer and cytotoxic T lymphocytes function while HLA-G induces the secretion of pro-angiogenic cytokines and chemokine thanks to an activator KIR receptor expressed by a minority of peripheral NK cells. The open conformer of classical MHC-I is able to interact with LILRA receptors described as being associated to the Th2-type cytokine response, triggering a condition for the M2 like TAM polarization. In addition, HLA-E antigens on the surface of the TAMs bind the inhibitory receptor CD94/NKG2A expressed by a subset of NK cells and activated cytotoxic T lymphocytes protecting from the cytolysis.Furthermore MHC class II expression by antigen presenting cells is finely regulated by factors provided with immunological capacities. Tumour-associated macrophages show an epigenetically controlled down-regulation of the MHC class II expression induced by the decoy receptor DcR3, a member of the TNFR, which further enhances the M2-like polarization. BAT3, a positive regulator of MHC class II expression in normal macrophages, seems to be secreted by TAMs, consequently lacking its intracellular function, it looks like acting as an immunosuppressive factor.In conclusion HLA could cover a considerable role in tumour-development orchestrated by tumour-associated macrophages.
    Journal of Translational Medicine 10/2013; 11(1):247. DOI:10.1186/1479-5876-11-247 · 3.99 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In several years after its discovery in the placenta, the human leukocyte antigen (HLA) class Ib protein, HLA-G, was not given much attention, nor was it assigned great importance. As time has unraveled, HLA-G has proven to have distinctive functions and an unforeseen and possibly important role in reproduction. HLA-G is characterized mainly by its low polymorphism and restricted tissue distribution in non-pathological conditions. In fact, its expression pattern is primarily limited to extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. Due to low polymorphism, almost the same protein is expressed by virtually all individuals. It is these unique features that make HLA-G differ from its highly polymorphic HLA class Ia counterparts, the HLA-A, -B, and -C molecules. Its function, seemingly diverse, is typically receptor-mediated, and involves interactions with a wide range of immune cells. As the expression of HLA-G primarily is limited to gestation, this has given rise to the hypothesis that HLA-G plays an important role in the immunological tolerance of the fetus by the mother. In keeping with this, it might not be surprising that polymorphisms in the HLA-G gene, and levels of HLA-G expression, have been linked to reproductive failure and pre-eclampsia. Based on recent studies, we speculate that HLA-G might be involved in mechanisms in reproductive immunology even before conception because HLA-G can be detected in the genital tract and in the blood of non-pregnant women, and is present in seminal fluid from men. In addition, HLA-G expression has been found in the pre-implanted embryo. Therefore, we propose that a combined contribution from the mother, the father, and the embryo/fetus is likely to be important. Furthermore, this review presents important aspects of HLA-G in relation to reproduction: from genetics to physiological effects, from pregnancy and pregnancy complications to a short discussion on future possible means of preventative measures and therapy.
    Frontiers in Immunology 05/2014; 5:198. DOI:10.3389/fimmu.2014.00198