Part II: Clinical Practice Guidelines for Adolescents and Young Adults With Down Syndrome: 12 to 21 Years

Down Syndrome Center of Western Pennsylvania, Children's Hospital of Pittsburgh, 3705 Fifth Ave, Pittsburgh, PA 15213, USA.
Journal of Pediatric Health Care (Impact Factor: 1.44). 05/2006; 20(3):198-205. DOI: 10.1016/j.pedhc.2006.02.006
Source: PubMed


Adolescents with DS have many medical conditions that put them at risk for health impairment and disability, and therefore they require frequent monitoring and screening throughout adolescence. Transition from adolescence to adulthood requires much planning and reflection so that the individual with DS can achieve his or her potential and live life to the fullest. Adolescents with DS and their families should be supported and guided by NPs and other health care professionals during this challenging and often difficult time.U.S. Department of Education, 2004.

9 Reads
  • Source
    • "This syndrome is a non-heritable genetic disorder that occurs at a prevalence of approximately 1 in 750 live births [1]. DS has been associated with more than 80 clinical manifestations, including cognitive impairment or intellectual disability, craniofacial features, cardiac abnormalities, hypotonia and early onset Alzheimer’s disease [2, 3]. In terms of cognitive impairment, DS individuals have an average Intelligence Quotient (IQ) value of 50 [4] as well as learning impairment involving both long-term and short-term memory [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84. Results Gene expression profiling identified a total of 317 differentially expressed genes (DEGs), selected from various spatiotemporal comparisons, between Ts1Cje and disomic mice. A total of 201 DEGs were identified from the cerebellum, 129 from the hippocampus and 40 from the cerebral cortex. Of these, only 18 DEGs were identified as common to all three brain regions and 15 were located in the triplicated segment. We validated 8 selected DEGs from the cerebral cortex (Brwd1, Donson, Erdr1, Ifnar1, Itgb8, Itsn1, Mrps6 and Tmem50b), 18 DEGs from the cerebellum (Atp5o, Brwd1, Donson, Dopey2, Erdr1, Hmgn1, Ifnar1, Ifnar2, Ifngr2, Itgb8, Itsn1, Mrps6, Paxbp1, Son, Stat1, Tbata, Tmem50b and Wrb) and 11 DEGs from the hippocampus (Atp5o, Brwd1, Cbr1, Donson, Erdr1, Itgb8, Itsn1, Morc3, Son, Tmem50b and Wrb). Functional clustering analysis of the 317 DEGs identified interferon-related signal transduction as the most significantly dysregulated pathway in Ts1Cje postnatal brain development. RT-qPCR and western blotting analysis showed both Ifnar1 and Stat1 were over-expressed in P84 Ts1Cje cerebral cortex and cerebellum as compared to wild type littermates. Conclusions These findings suggest over-expression of interferon receptor may lead to over-stimulation of Jak-Stat signaling pathway which may contribute to the neuropathology in Ts1Cje or DS brain. The role of interferon mediated activation or inhibition of signal transduction including Jak-Stat signaling pathway has been well characterized in various biological processes and disease models including DS but information pertaining to the role of this pathway in the development and function of the Ts1Cje or DS brain remains scarce and warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-624) contains supplementary material, which is available to authorized users.
    BMC Genomics 07/2014; 15(1):624. DOI:10.1186/1471-2164-15-624 · 3.99 Impact Factor
  • Source
    • "All DS patients exhibit ID. They also develop other clinical features such as typical craniofacial appearance (e.g., brachycephaly, epicanthic fold and protruding tongue), hypotonia, congenital heart defects, early onset of Alzheimer's disease (AD), dementia as well as cognitive impairment (Van Cleve and Cohen, 2006; Van Cleve et al., 2006). Mild to severe intellectual disabilities were observed in DS patients with reported average value of 50 in IQ and learning disabilities involving both long-term and short-term memory formation (Brown et al., 2003; Vicari et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Intellectual disability (ID) is one of the many features manifested in various genetic syndromes leading to deficits in cognitive function among affected individuals. ID is a feature affected by polygenes and multiple environmental factors. It leads to a broad spectrum of affected clinical and behavioural characteristics among patients. Until now, the causative mechanism of ID is unknown and the progression of the condition is poorly understood. Advancement in technology and research had identified various genetic abnormalities and defects as the potential cause of ID. However, the link between these abnormalities with ID is remained inconclusive and the roles of many newly discovered genetic components such as non-coding RNAs have not been thoroughly investigated. In this review, we aim to consolidate and assimilate the latest development and findings on a class of small non-coding RNAs known as microRNAs (miRNAs) involvement in ID development and progression with special focus on Down syndrome and X-linked ID (including Fragile X syndrome).
    Frontiers in Cellular Neuroscience 04/2013; 7(1):41. DOI:10.3389/fncel.2013.00041 · 4.29 Impact Factor
  • Source

Show more