Article

Discovery of novel metabolites from marine actinomycetes.

Department of Microbiology and Anti-infective Discovery, Nereus Pharmaceuticals, Inc., 10480 Wateridge Circle, San Diego, CA 92121, USA.
Current Opinion in Microbiology (Impact Factor: 8.23). 07/2006; 9(3):245-51. DOI: 10.1016/j.mib.2006.03.004
Source: PubMed

ABSTRACT Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats. These marine actinomycetes produce different types of new secondary metabolites. Many of these metabolites possess biological activities and have the potential to be developed as therapeutic agents. Marine actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

4 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we report the draft genome sequence of Nocardiopsis sp. strain TP-A0876, isolated from marine sediment, which produces polyketide-derived pyrones called nocapyrones. The genome contains three polyketide synthase (PKS) gene clusters, one of which was proposed to be responsible for nocapyrone biosynthesis. This genome sequence will facilitate the study of the potential for secondary metabolism in Nocardiopsis strains.
    Genome announcements. 01/2014; 2(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Five strains of Actinomyces were isolated from freshwater sponges, Baikalospongia and Lubomirskia, in Lake Baikal. By 16S rRNA sequencing, isolates were identified as Streptomyces griseoplanus, S. halstedii, S. violascens, S. flavovirens, and S. microflavus. Isolates had different characteristics of growth temperature, carbon utilization, enzyme activity, and cellular fatty acid composition. Optimum growth conditions of isolates were , pH 8-9, and 0-1.5% salt concentrations. Major fatty acid compositions were anteiso-, iso-, and iso-. Strain ATS-BA-19 had DNase and chitinase activities and strain ATS-BA-16 had cellulase and protease activities. Colonies of strain ATS-BA-15 and ATS-BA-19 made inhibition zone of Pseudomonas aeruginosa.
    Korean Journal of Microbiology 01/2011; 47(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.
    SpringerPlus 01/2014; 3:382.

Full-text

View
2 Downloads
Available from