Article

Lower Cambrian vendobionts from China and early diploblast evolution.

Early Life Institute and Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, China.
Science (Impact Factor: 31.48). 06/2006; 312(5774):731-4. DOI: 10.1126/science.1124565
Source: PubMed

ABSTRACT Ediacaran assemblages immediately predate the Cambrian explosion of metazoans and should have played a crucial role in this radiation. Their wider relationships, however, have remained refractory and difficult to integrate with early metazoan phylogeny. Here, we describe a frondlike fossil, Stromatoveris (S. psygmoglena sp. nov.), from the Lower Cambrian Chengjiang Lagerstätte (Yunnan, China) that is strikingly similar to Ediacaran vendobionts. The exquisite preservation reveals closely spaced branches, probably ciliated, that appear to represent precursors of the diagnostic comb rows of ctenophores. Therefore, this finding has important implications for the early evolution of this phylum and related diploblasts, some of which independently evolved a frondose habit.

Full-text

Available from: Zhifei Zhang, Jun 11, 2015
1 Follower
 · 
200 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of fossils in dating the tree of life has been misunderstood. Fossils can provide good "minimum" age estimates for branches in the tree, but "maximum" constraints on those ages are poorer. Current debates about which are the "best" fossil dates for calibration move to consideration of the most appropriate constraints on the ages of tree nodes. Because fossil-based dates are constraints, and because molecular evolution is not perfectly clock-like, analysts should use more rather than fewer dates, but there has to be a balance between many genes and few dates versus many dates and few genes. We provide "hard" minimum and "soft" maximum age constraints for 30 divergences among key genome model organisms; these should contribute to better understanding of the dating of the animal tree of life.
    Molecular Biology and Evolution 02/2007; 24(1):26-53. DOI:10.1093/molbev/msl150 · 14.31 Impact Factor
  • Geological Society London Memoirs 11/2013; 38(1):35-43. DOI:10.1144/M38.4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ediacaran macrofossils from the Avalon Terrane (primarily eastern Newfoundland and the central UK) record some of the earliest large and complex multicellular organisms on Earth. Perhaps the greatest unknown regarding these fossils is their relevance to the early evolutionary history of the Kingdom Animalia. In recent years, new data and discoveries have revealed insights into Ediacaran paleobiology, taxonomic relationships, paleoecology and taphonomy, significantly refining our understanding of Avalonian ecosystems. Here, we summarise recent observational and quantitative studies, and their bearing on the current understanding of Avalonian benthic marine ecosystems. A review of existing knowledge of the biological composition of Avalonian marine assemblages demonstrates that they record densely-populated ecosystems inhabited by a diverse range of organisms, likely representing multiple biological Kingdoms. Appreciation of this diversity, and of the complexities it introduces to paleoecological studies, is vital when considering the relationship between macroevolution and contemporaneous climatic, tectonic and geochemical events. We then summarise current understanding of Avalonian paleoecology. Studies into locomotion, reproduction, feeding strategies, and community structure and succession reveal that these ecosystems were considerably different to Phanerozoic settings. Furthermore, we suggest that Avalonian ecosystems witnessed the appearance of novel nutrient sources, offering new opportunities and niches for benthic organisms. The suggestion that the numerically dominant rangeomorphs were osmotrophic is reviewed and appraised in light of geochemical, morphological, and biological information. Finally, the use of modern ecological metrics in the study of Ediacaran fossil assemblages is assessed. Concerns regarding the interpretation of paleoecological data are outlined in light of current taphonomic and sedimentological understanding, and these cast doubt on previous suggestions that the Avalonian assemblages were largely composed of metazoans. Nevertheless, we emphasise that if treated with necessary caution, paleoecological data can play a significant role in assisting efforts to determine the biological affinities of late Ediacaran macroscopic organisms.
    Gondwana Research 06/2015; 27(4):1355-1380. DOI:10.1016/j.gr.2014.11.002 · 8.12 Impact Factor