Progenitors Systemically Transplanted into Neonatal Mice Localize to Areas of Active Bone Formation In Vivo: Implications of Cell Therapy for Skeletal Diseases

Department of Orthopaedics and Rehabilitation, Division of Musculoskeletal SciencesPenn State College of Medicine, Mail Code H089, 500 University Drive, Hershey, Pennsylvania 17033, USA.
Stem Cells (Impact Factor: 6.52). 09/2006; 24(8):1869-78. DOI: 10.1634/stemcells.2005-0430
Source: PubMed


The potential of cell or gene therapy to treat skeletal diseases was evaluated through analysis of transplanted osteoprogenitors into neonatal homozygous and heterozygous osteogenesis imperfecta mice (oim). The osteoprogenitors used for transplantation were prepared by injection of mesenchymal stem cells (MSCs) marked with the green fluorescent protein (GFP) into normal mice with the subsequent retrieval of the cells at 35 days. The retrieved cells referred to here as osteoprogenitors were expanded in culture and transplanted into the 2-day-old oim mice via the superficial temporal vein. The recipient mice were evaluated at 2 and 4 weeks after cell transplantation. Four weeks after transplantation, tissue sections made from femurs and tibias of oim mice showed that the GFP-positive (GFP(+)) cells were distributed on the surfaces of the bone spicules in the spongiosa, the area of active bone formation. In the diaphysis, the GFP(+) cells were distributed in the bone marrow, on the endosteal surfaces, and also in the cortical bone. Immunofluorescence localization for GFP confirmed that the fluorescence seen in tissue sections was due to the engrafted donor cells, not bone autofluorescence. Gene expression analysis by polymerase chain reaction of the GFP(+) cells retrieved from the bones and marrow of the recipient mice demonstrated that the cells from bone were osteoblasts, whereas those from bone marrow were progenitors. These data demonstrate that MSCs delivered systemically to developing osteogenesis imperfecta mice engraft in bones, localize to areas of active bone formation, differentiate into osteoblasts in vivo, and may contribute to bone formation in vivo.

Download full-text


Available from: Chris Niyibizi, Sep 22, 2014
7 Reads
  • Source
    • "Antibodies used for FACS analysis were phycoerythrin (PE) conjugated to anti-CD13, anti-CD34, anti-CD44, anti-CD45, anti-CD73, anti-CD90, anti-CD117, and unconjugated antibodies against CD105 (BD Biosciences, San Diego, CA). Methods described previously were used for preparation of the cells for FACS analysis [52]. In brief, a total of 2 × 105 cells from different treatments were resuspended in 200 μl of Dulbecco’s PBS containing 2% FBS and 0.01% NaN3 and incubated for 30 minutes at 4°C with phycoerythrin (PE)-conjugated antibodies to surface antigens for analysis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells into embryonic like state (ESC) using defined factors. There is great interest in these cells because of their potential for application in regenerative medicine. Results iPSC reprogrammed from murine tail tip fibroblasts were exposed to retinoic acid alone (RA) or in combination with TGF-β1 and 3, basic fibroblast growth factor (bFGF) or bone morphogenetic protein 2 (BMP-2). The resulting cells expressed selected putative mesenchymal stem cells (MSCs) markers; differentiated toward osteoblasts and adipocytic cell lineages in vitro at varying degrees. TGF-beta1 and 3 derived-cells possessed higher potential to give rise to osteoblasts than bFGF or BMP-2 derived-cells while BMP-2 derived cells exhibited a higher potential to differentiate toward adipocytic lineage. TGF-β1 in combination with RA derived-cells seeded onto HA/TCP ceramics and implanted in mice deposited typical bone. Immunofluorescence staining for bone specific proteins in cell seeded scaffolds tissue sections confirmed differentiation of the cells into osteoblasts in vivo. Conclusions The results demonstrate that TGF-beta family of proteins could potentially be used to generate murine iPSC derived-cells with potential for osteoblasts differentiation and bone formation in vivo and thus for application in musculoskeletal tissue repair and regeneration.
    BMC Cell Biology 12/2012; 13(1):35. DOI:10.1186/1471-2121-13-35 · 2.34 Impact Factor
  • Source
    • "These cells should be of use for cell based therapies and tissue engineering which have been performed in trials to overcome the difficulties of gene based therapies and their medical limitations. The use of stem cell implantation has been increasing, and it is strongly suggested that its use may enable an improved treatment of some incurable diseases such as genetic disorders [26], spinal cord injuries [11] and bone fracture malignancies [25,35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III β tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies.
    Journal of veterinary science (Suwŏn-si, Korea) 12/2009; 10(4):369. DOI:10.4142/jvs.2009.10.3.181 · 1.16 Impact Factor
Show more