Article

The intestinal bacterial colonisation in preterm infants: A review of the literature

Department of Pediatrics, VU University Medical Center, Amsterdamo, North Holland, Netherlands
Clinical Nutrition (Impact Factor: 3.94). 07/2006; 25(3):361-8. DOI: 10.1016/j.clnu.2006.03.002
Source: PubMed

ABSTRACT The aim of this study is to review the normal development of the intestinal microflora of preterm infants and the factors influencing its development. Preterm infants have an increased intestinal permeability, which may lead to bacterial translocation to systemic organs and tissues. In combination with immaturity of the immune system the risk to systemic infections might be increased. Especially potential pathogenic bacteria are able to translocate. The intestinal microflora of breast-fed term infants, dominated by bifidobacteria and lactobacilli, is thought to suppress the growth of potentially pathogenic bacteria. Many attemps have been made to stimulate the presence of bifidobacteria and lactobacilli with changes in the diet and ingredients-like prebiotics and probiotics. After selection, six studies were included reviewing the intestinal bacterial colonisation of preterm infants. In general, these studies show that the intestinal bacterial colonisation with beneficial bacteria is delayed in preterm infants. The number of potentially pathogenic bacteria is high. Antibiotics influence the intestinal colonisation. Many preterm infants receive prophylactic antibiotics at birth. As antibiotics delay the normal intestinal colonisation, caution should be given to the treatment with broadspectrum antibiotics in preterm infants at birth and every attempt has to be made to restrict the period of treatment.

1 Bookmark
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Postnatal maturation of immune regulation is largely driven by exposure to microbes. The gastrointestinal tract is the largest source of microbial exposure, as the human gut microbiome contains up to 10(14) bacteria, which is 10 times the number of cells in the human body. Several studies in recent years have shown differences in the composition of the gut microbiota in children who are exposed to different conditions before, during, and early after birth. A number of maternal factors are responsible for the establishment and colonization of gut microbiota in infants, such as the conditions surrounding the prenatal period, time and mode of delivery, diet, mother's age, BMI, smoking status, household milieu, socioeconomic status, breastfeeding and antibiotic use, as well as other environmental factors that have profound effects on the microbiota and on immunoregulation during early life. Early exposures impacting the intestinal microbiota are associated with the development of childhood diseases that may persist to adulthood such as asthma, allergic disorders (atopic dermatitis, rhinitis), chronic immune-mediated inflammatory diseases, type 1 diabetes, obesity, and eczema. This overview highlights some of the exposures during the pre- and postnatal time periods that are key in the colonization and development of the gastrointestinal microbiota of infants as well as some of the diseases or disorders that occur due to the pattern of initial gut colonization.
    Frontiers in Pediatrics 10/2014; 2:109. DOI:10.3389/fped.2014.00109
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Necrotizing enterocolitis (NEC) is one of the most destructive diseases associated with conditions of neonatal prematurity. Supplementation with enteral prebiotics may reduce the incidence of NEC, especially in infants who fed exclusively with breast-milk. Therefore, we compared the efficacy and safety of enteral supplementation of a prebiotic mixture (short chain galacto-oligosaccharides/long chain fructo-oligosaccharides [SCGOS/LCFOS]) versus no intervention on incidence of NEC in preterm infants. In a single-center randomized control trial 75 preterm infants (birth weight [BW] ≤1500 g, gestational age ≤34 weeks and were not fed with formula) on 30 ml/kg/day volume of breast-milk were randomly allocated to have enteral supplementation with a prebiotic mixture (SCGOS/LCFOS; 9:1) or not receive any prebiotic. The incidence of suspected NEC, feeding intolerance, time to full enteral feeds, duration of hospitalization were investigated. Differences in demographic characteristics were not statistically important. SCGOS/LCFOS mixture significantly reduced the incidence of suspected NEC, (1 [4.0%] vs. 11 [22.0%]; hazard ratio: 0.49 [95% confidence interval: 0.29-0.84]; P = 0.002), and time to full enteral feeds (11 [7-21] vs. 14 [8-36] days; P - 0.02]. Also duration of hospitalization was meaningfully shorter in the prebiotic group (16 [9-45] vs. 25 [11-80]; P - 0.004]. Prebiotic oligosaccharides were well tolerated by very low BW (VLBW) infants. Enteral supplementation with prebiotic significantly reduced the incidence of NEC in VLBW infants who were fed exclusively breast-milk. This finding suggests that it might have been the complete removal of formula which caused a synergistic effect between nonhuman neutral oligosaccharides (prebiotic) and human oligosaccharides.
    International journal of preventive medicine 11/2014; 5(11):1387-95.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Necrotizing enterocolitis (NEC) is one of the most destructive diseases associated with conditions of neonatal prematurity. Supplementation with enteral prebiotics may reduce the incidence of NEC, especially in infants who fed exclusively with breast-milk. Therefore, we compared the efficacy and safety of enteral supplementation of a prebiotic mixture (short chain galacto-oligosaccharides/long chain fructo-oligosaccharides [ SC GOS/ LC FOS]) versus no intervention on incidence of NEC in preterm infants. Methods: In a single-center randomized control trial 75 preterm infants (birth weight [BW] ≤1500 g, gestational age ≤34 weeks and were not fed with formula) on 30 ml/kg/day volume of breast-milk were randomly allocated to have enteral supplementation with a prebiotic mixture (SC GOS/ LC FOS; 9:1) or not receive any prebiotic. The incidence of suspected NEC, feeding intolerance, time to full enteral feeds, duration of hospitalization were investigated. Results: Differences in demographic characteristics were not statistically important. SC GOS/ LC FOS mixture significantly reduced the incidence of suspected NEC, (1 [4.0%] vs. 11 [22.0%]; hazard ratio: 0.49 [95% confidence interval: 0.29-0.84]; P = 0.002), and time to full enteral feeds (11 [7-21] vs. 14 [8-36] days; P -0.02]. Also duration of hospitalization was meaningfully shorter in the prebiotic group (16 [9-45] vs. 25 [11-80]; P -0.004]. Prebiotic oligosaccharides were well tolerated by very low BW (VLBW) infants. Conclusions: Enteral supplementation with prebiotic significantly reduced the incidence of NEC in VLBW infants who were fed exclusively breast-milk. This finding suggests that it might have been the complete removal of formula which caused a synergistic effect between nonhuman neutral oligosaccharides (prebiotic) and human oligosaccharides.
    International journal of preventive medicine 11/2014; 5(11):1387-95.

Full-text

Download
51 Downloads
Available from
May 16, 2014