pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene.

Institute of BioAgricultural Sciences , Academia Sinica, Taipei 115, Taiwan, Republic of China.
Plant physiology (Impact Factor: 7.39). 08/2006; 141(3):1000-11. DOI: 10.1104/pp.106.078063
Source: PubMed

ABSTRACT We recently demonstrated that microRNA399 (miR399) controls inorganic phosphate (Pi) homeostasis by regulating the expression of UBC24 encoding a ubiquitin-conjugating E2 enzyme in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing miR399 accumulated excessive Pi in the shoots and displayed Pi toxic symptoms. In this study, we revealed that a previously identified Pi overaccumulator, pho2, is caused by a single nucleotide mutation resulting in early termination within the UBC24 gene. The level of full-length UBC24 mRNA was reduced and no UBC24 protein was detected in the pho2 mutant, whereas up-regulation of miR399 by Pi deficiency was not affected. Several characteristics of Pi toxicity in the pho2 mutant were similar to those in the miR399-overexpressing and UBC24 T-DNA knockout plants: both Pi uptake and translocation of Pi from roots to shoots increased and Pi remobilization within leaves was impaired. These phenotypes of the pho2 mutation could be rescued by introduction of a wild-type copy of UBC24. Kinetic analyses revealed that greater Pi uptake in the pho2 and miR399-overexpressing plants is due to increased Vmax. The transcript level of most PHT1 Pi transporter genes was not significantly altered, except PHT1;8 whose expression was enhanced in Pi-sufficient roots of pho2 and miR399-overexpressing compared with wild-type plants. In addition, changes in the expression of several organelle-specific Pi transporters were noticed, which may be associated with the redistribution of intracellular Pi under excess Pi. Furthermore, miR399 and UBC24 were colocalized in the vascular cylinder. This observation not only provides important insight into the interaction between miR399 and UBC24 mRNA, but also supports their systemic function in Pi translocation and remobilization.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In plants, the uptake from soil and intercellular transport of inorganic phosphate (Pi) is mediated by the PHT1 family of membrane-spanning proton : Pi symporters. The Arabidopsis thaliana AtPHT1 gene family comprises nine putative high-affinity Pi transporters. While AtPHT1;1 to AtPHT1;4 are involved in Pi acquisition from the rhizosphere, the role of the remaining transporters is less clear.ResultsPi uptake and tissue accumulation studies in AtPHT1;8 and AtPHT1;9 knock-out mutants compared to wild-type plants showed that both transporters are involved in the translocation of Pi from the root to the shoot. Upon inactivation of AtPHT1;9, changes in the transcript profiles of several genes that respond to plant phosphorus (P) status indicated a possible role in the regulation of systemic signaling of P status within the plant. Potential genetic interactions were found among PHT1 transporters, as the transcript profile of AtPHT1;5 and AtPHT1;7 was altered in the absence of AtPHT1;8, and the transcript profile of AtPHT1;7 was altered in the Atpht1;9 mutant. These results indicate that AtPHT1;8 and AtPHT1;9 translocate Pi from the root to the shoot, but not from the soil solution into the root.Conclusion AtPHT1;8 and AtPHT1;9 are likely to act sequentially in the interior of the plant during the root-to-shoot translocation of Pi, and play a more complex role in the acclimation of A. thaliana to changes in Pi supply than was previously thought.
    BMC Plant Biology 11/2014; 14(1):334. · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein ubiquitin is a covalent modifier of proteins, including itself. The ubiquitin system encompasses the enzymes required for catalysing attachment of ubiquitin to substrates as well as proteins that bind to ubiquitinated proteins leading them to their final fate. Also included are activities that remove ubiquitin independent of, or in concert with, proteolysis of the substrate, either by the proteasome or proteases in the vacuole. In addition to ubiquitin encoded by a family of fusion proteins, there are proteins with ubiquitin-like domains, likely forming ubiquitin's β-grasp fold, but incapable of covalent modification. However, they serve as protein-protein interaction platforms within the ubiquitin system. Multi-gene families encode all of these types of activities. Within the ubiquitination machinery "half" of the ubiquitin system are redundant, partially redundant, and unique components affecting diverse developmental and environmental responses in plants. Notably, multiple aspects of biotic and abiotic stress responses require, or are modulated by, ubiquitination. Finally, aspects of the ubiquitin system have broad utility: as components to enhance gene expression or to regulate protein abundance. This review focuses on the ubiquitination machinery: ubiquitin, unique aspects about the synthesis of ubiquitin and organization of its gene family, ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases, or E3s. Given the large number of E3s in Arabidopsis this review covers the U box, HECT and RING type E3s, with the exception of the cullin-based E3s.
    The Arabidopsis Book 01/2014; 12:e0174.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inositol hexakisphosphate (IP6) provides a phosphorous reservoir in plant seeds; in addition, along with its biosynthesis intermediates and derivatives, IP6 also plays important roles in diverse developmental and physiological processes. Disruption of the Arabidopsis inositol pentakisphosphate 2-kinase coding gene AtIPK1 was previously shown to reduce IP6 content in vegetative tissues and affect phosphate (Pi) sensing. Here we show that AtIPK1 is required for sustaining plant growth, as null mutants are non-viable. An incomplete loss-of-function mutant, atipk1-1, exhibited disturbed Pi homeostasis and overaccumulated Pi as a consequence of increased Pi uptake activity and root-to-shoot Pi translocation. The atipk1-1 mutants also showed a Pi-deficiency-like root system architecture with reduced primary root and enhanced lateral root growth. Transcriptome analysis indicated that a subset of Pi starvation-responsive genes was transcriptionally perturbed in the atipk1-1 mutants and the expression of multiple genes involved in Pi uptake, allocation, and remobilization was increased. Genetic and transcriptional analyses suggest that disturbance of Pi homeostasis caused by atipk1 mutation involved components in addition to PHR1(-like) transcription factors. Notably, the transcriptional increase of a number of Pi starvation-responsive genes in the atipk1-1 mutants is correlated with the reduction of histone variant H2A.Z occupation in chromatin. The myo-inositol-1-phosphate synthase mutants, atmips1 and atmips2 with comparable reduction in vegetative IP6 to that in the atipk1-1 mutants did not overaccumulate Pi, suggesting that Pi homeostasis modulated by AtIPK1 is not solely attributable to IP6 level. This study reveals that AtIPK1 has important roles in growth and Pi homeostasis.This article is protected by copyright. All rights reserved.
    The Plant Journal 08/2014; · 6.82 Impact Factor

Full-text (2 Sources)

Available from
Aug 31, 2014