Article

Dynamics of DNA Ejection from Bacteriophage

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA.
Biophysical Journal (Impact Factor: 3.83). 08/2006; 91(2):411-20. DOI: 10.1529/biophysj.105.070532
Source: PubMed

ABSTRACT The ejection of DNA from a bacterial virus (i.e., phage) into its host cell is a biologically important example of the translocation of a macromolecular chain along its length through a membrane. The simplest mechanism for this motion is diffusion, but in the case of phage ejection a significant driving force derives from the high degree of stress to which the DNA is subjected in the viral capsid. The translocation is further sped up by the ratcheting and entropic forces associated with proteins that bind to the viral DNA in the host cell cytoplasm. We formulate a generalized diffusion equation that includes these various pushing and pulling effects and make estimates of the corresponding speedups in the overall translocation process. Stress in the capsid is the dominant factor throughout early ejection, with the pull due to binding particles taking over at later stages. Confinement effects are also investigated, in the case where the phage injects its DNA into a volume comparable to the capsid size. Our results suggest a series of in vitro experiments involving the ejection of DNA into vesicles filled with varying amounts of binding proteins from phage whose state of stress is controlled by ambient salt conditions or by tuning genome length.

0 Followers
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to the obtained experimental results, the thermal shock (from 37 to 53 °C) not only stops the multiplication process of Escherichia coli bacteria, but also causes bacterial titer to decrease gradually. After this period lasting up to 1 hour, the bacterial cells continue to grow. A similar type of response was observed when bacteria were subjected to acid shock. Increasing acidity of media leads to decrease of bacterial growth process, and finally, their titer curve sharply falls over time. Also, interesting results were obtained about necessary conditions for infecting the bacteria by phages. Particularly, DNA injection from phages into bacterial cells requires most of corresponding bacterial membrane receptors to be occupied by phages. We suppose that this occurs due to autocrine phenomenon when the signaling molecules block the DNA ejection from phage particles. This effect lasts until a certain number of phage particles are attached to the membrane. After that, DNA injection from phage head into the cytoplasm takes place and the process of bacterial infection begins. The real number of phages in a stock is by several orders higher than the number of plaque-forming units in a given stock, which is determined by a classical double-layer agar method.
    Current Microbiology 08/2014; 69(6). DOI:10.1007/s00284-014-0665-x · 1.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While relatively simple biologically, bacteriophages are sophisticated biochemical machines that execute a precise sequence of events during virus assembly, DNA packaging, and ejection. These stages of the viral life cycle require intricate coordination of viral components whose structures are being revealed by single molecule experiments and high resolution (cryo-electron microscopy) reconstructions. For example, during packaging, bacteriophages employ some of the strongest known molecular motors to package DNA against increasing pressure within the viral capsid shell. Located upstream of the motor is an elaborate portal system through which DNA is threaded. A high resolution reconstruction of the portal system for bacteriophage ϕ29 reveals that DNA buckles inside a small cavity under large compressive forces. In this study, we demonstrate that DNA can also buckle in other bacteriophages including T7 and P22. Using a computational rod model for DNA, we demonstrate that a DNA buckle can initiate and grow within the small confines of a cavity under biologically-attainable force levels. The forces of DNA-cavity contact and DNA-DNA electrostatic repulsion ultimately limit cavity filling. Despite conforming to very different cavity geometries, the buckled DNA within T7 and P22 exhibits near equal volumetric energy density (∼ 1 kT/nm(3)) and energetic cost of packaging (∼ 22 kT). We hypothesize that a DNA buckle creates large forces on the cavity interior to signal the conformational changes to end packaging. In addition, a DNA buckle may help retain the genome prior to tail assembly through significantly increased contact area with the portal. Copyright © 2015. Published by Elsevier Inc.
    Journal of Structural Biology 01/2015; 189(3). DOI:10.1016/j.jsb.2015.01.002 · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms.
    Biophysical Journal 10/2014; 107(8):1924–1929. DOI:10.1016/j.bpj.2014.09.002 · 3.83 Impact Factor

Preview

Download
2 Downloads
Available from