Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation.

University of Florida Shands Cancer Center, Gainesville, Florida 32610-0232, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2006; 281(27):18859-67. DOI: 10.1074/jbc.M512543200
Source: PubMed

ABSTRACT Bax is a major proapoptotic member of the Bcl2 family that is required for apoptotic cell death. We have recently discovered that Bax phosphorylation at serine 184 induced by nicotine through activation of protein kinase AKT abolishes its proapoptotic function in human lung cancer cells. Here we found that either treatment of cells with the protein phosphatase 2A (PP2A) inhibitor okadaic acid or specific disruption of PP2A activity by expression of SV40 small tumor antigen enhanced Bax phosphorylation, whereas C(2)-ceramide, a potent PP2A activator, reduced nicotine-induced Bax phosphorylation, suggesting that PP2A may function as a physiological Bax phosphatase. PP2A co-localized and interacted with Bax. Purified, active PP2A directly dephosphorylated Bax in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppressed nicotine-stimulated Bax phosphorylation in association with increased apoptotic cell death. By contrast, depletion of PP2A/C by RNA interference enhanced Bax phosphorylation and prolonged cell survival. Mechanistically C(2)-ceramide-induced Bax dephosphorylation caused a conformational change by exposure of the 6A7 epitope (amino acids 13-19) that is normally hidden at its N terminus that promoted the insertion of Bax into mitochondrial membranes and formation of Bax oligomers leading to cytochrome c release and apoptosis. In addition, PP2A directly disrupted the Bcl2/Bax association to liberate Bax from the heterodimer complex. Thus, PP2A may function as a physiological Bax regulatory phosphatase that not only dephosphorylates Bax but also activates its proapoptotic function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days.
    Toxicology International 01/2014; 21(1):57-64.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bax, a central death regulator, is required at the decisional stage of apoptosis. We recently identified serine 184 (S184) of Bax as a critical functional switch controlling its proapoptotic activity. Here we used the structural pocket around S184 as a docking site to screen the NCI library of small molecules using the UCSF-DOCK programme suite. Three compounds, small-molecule Bax agonists SMBA1, SMBA2 and SMBA3, induce conformational changes in Bax by blocking S184 phosphorylation, facilitating Bax insertion into mitochondrial membranes and forming Bax oligomers. The latter leads to cytochrome c release and apoptosis in human lung cancer cells, which occurs in a Bax- but not Bak-dependent fashion. SMBA1 potently suppresses lung tumour growth via apoptosis by selectively activating Bax in vivo without significant normal tissue toxicity. Development of Bax agonists as a new class of anticancer drugs offers a strategy for the treatment of lung cancer and other Bax-expressing malignancies.
    Nature Communications 09/2014; 5:4935. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity leading to long-lasting decreases in synaptic strength. NMDAR-LTD is essential for spatial and working memory, but its role in hippocampus-dependent fear memory has yet to be determined. Induction of NMDAR-LTD requires the activation of caspase-3 by cytochrome c. Cytochrome c normally resides in mitochondria and during NMDAR-LTD is released from mitochondria, a process promoted by Bax (Bcl-2-associated X protein). Bax induces cell death in apoptosis, but it plays a nonapoptotic role in NMDAR-LTD. Here, we investigated the role of NMDAR-LTD in fear memory in CA1-specific Bax knock-out mice. In hippocampal slices from these knock-out mice, while long-term potentiation of synaptic transmission, basal synaptic transmission, and paired-pulse ratio are intact, LTD in both young and fear-conditioned adult mice is obliterated. Interestingly, in CA1-specific Bax knock-out mice, long-term contextual fear memory is impaired, but the acquisition of fear memory and innate fear are normal. Moreover, these conditional Bax knock-out mice exhibit less behavioral despair. These findings indicate that NMDAR-LTD is required for consolidation, but not the acquisition of fear memory. Our study also shows that Bax plays an important role in depressive behavior.
    Journal of Neuroscience 06/2014; 34(26):8741-8. · 6.75 Impact Factor