Article

Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation

Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 08/2006; 281(27):18859-67. DOI: 10.1074/jbc.M512543200
Source: PubMed

ABSTRACT Bax is a major proapoptotic member of the Bcl2 family that is required for apoptotic cell death. We have recently discovered that Bax phosphorylation at serine 184 induced by nicotine through activation of protein kinase AKT abolishes its proapoptotic function in human lung cancer cells. Here we found that either treatment of cells with the protein phosphatase 2A (PP2A) inhibitor okadaic acid or specific disruption of PP2A activity by expression of SV40 small tumor antigen enhanced Bax phosphorylation, whereas C(2)-ceramide, a potent PP2A activator, reduced nicotine-induced Bax phosphorylation, suggesting that PP2A may function as a physiological Bax phosphatase. PP2A co-localized and interacted with Bax. Purified, active PP2A directly dephosphorylated Bax in vitro. Overexpression of the PP2A catalytic subunit (PP2A/C) suppressed nicotine-stimulated Bax phosphorylation in association with increased apoptotic cell death. By contrast, depletion of PP2A/C by RNA interference enhanced Bax phosphorylation and prolonged cell survival. Mechanistically C(2)-ceramide-induced Bax dephosphorylation caused a conformational change by exposure of the 6A7 epitope (amino acids 13-19) that is normally hidden at its N terminus that promoted the insertion of Bax into mitochondrial membranes and formation of Bax oligomers leading to cytochrome c release and apoptosis. In addition, PP2A directly disrupted the Bcl2/Bax association to liberate Bax from the heterodimer complex. Thus, PP2A may function as a physiological Bax regulatory phosphatase that not only dephosphorylates Bax but also activates its proapoptotic function.

0 Followers
 · 
104 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we used gene targeting in mice to identify the in vivo functions of PKD1. In addition to phenotypically characterizing the resulting knock-out animals, we also used mouse embryonic fibroblasts to investigate the associated signaling pathways in detail. This study is the first to use genetic deletion to reveal that PKD1 is a key regulator involved in determining the threshold of mitochondrial depolarization that leads to the production of reactive oxygen species. In addition, we also provide clear evidence that PKCδ is upstream of PKD1 in this process and acts as the activating kinase of PKD1. Therefore, our in vivo data indicate that PKD1 functions not only in the context of aging but also during nutrient deprivation, which occurs during specific phases of tumor growth. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 03/2015; 290(16). DOI:10.1074/jbc.M114.619148 · 4.60 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
    APOPTOSIS 02/2015; 20(5). DOI:10.1007/s10495-015-1109-1 · 3.61 Impact Factor