Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Asians with chronic pulmonary disease: a pilot study.

Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 5, Lower Kent Ridge Road, Singapore 119074, Singapore. <>
Journal of Cystic Fibrosis (Impact Factor: 2.87). 08/2006; 5(3):159-64. DOI: 10.1016/j.jcf.2006.02.002
Source: PubMed

ABSTRACT Little is known about the relationship between cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in Asian patients and severe asthma or idiopathic bronchiectasis. We investigated this potential relationship in the Singaporean Chinese.
Twenty patients with chronic pulmonary disease, 14 with severe asthma and 6 with idiopathic bronchiectasis, were screened for CFTR mutations by direct gene sequencing. The frequencies of identified putative mutations were compared against 40 unaffected controls and 96 unselected population samples.
Three missense mutations (I125T, I556V, and Q1352H) and 1 splice site variant (intron 8 12TG5T) were identified in a total of 10 patients, representing a combined mutant/variant allele frequency of 0.25. These alleles were also observed in the controls, but at a significantly lower allele frequency of 0.09 (P<0.01). Furthermore, the I125T mutation was significantly associated with the idiopathic bronchiectasis sub-group (P<0.05).
The significantly higher frequency of CFTR mutations among patients with chronic pulmonary disease compared with unaffected controls suggests that these mutations may increase risk for disease. The association of I125T with idiopathic bronchiectasis alone suggests that different mutations predispose to different disease.

  • Source
    Annals of Human Biology 01/2011; · 1.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A key issue in the treatment of many cancers is the development of resistance to chemotherapeutic drugs. Resistance mechanisms are numerous and complex. One of them is mediated by the overexpression of ATP-binding cassette (ABC) transporters able to efflux drugs out of the tumor cell. The last two decades have seen notable growth of knowledge concerning the involvement of ABC transporters in resistance to chemotherapy. This review emphasizes these transporters, their clinical relevance and the diagnostic methods and strategies to circumvent multidrug resistance (MDR) mediated by ABC transporters.
    Biochimica et Biophysica Acta 07/2007; 1775(2):237-62. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several lines of evidence suggest that in Caucasian populations, mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene are associated with susceptibility to lung disease caused by nontuberculous mycobacteria (NTM). However, there is little data available in Asian populations, in which the prevalence of CF is very low. Therefore, we investigated this potential relationship in a Korean population. Sixty patients who fulfilled the diagnostic criteria for NTM lung disease were screened for genetic alterations in the CFTR gene by whole-exon resequencing. For all identified CFTR gene variants, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) genotyping was performed. Genotype and haplotype data were compared between 360 patients with NTM lung disease and 446 healthy controls. Among 13 CFTR genetic variants that were found by whole-exon resequencing, Q1352H showed a significantly higher frequency in NTM patients than in controls, giving an odds ratio (OR) of 4.27 (95% confidence interval (CI), 1.43-12.78). A haplotype with Q1352H showed the strongest association with the disease, with an OR of 3.73 (95% CI, 1.50-9.25). Furthermore, all Q1352H alleles were associated with the V allele of the V470M variant. Our results suggest that CFTR gene variants may increase susceptibility to NTM lung disease in the Korean population. Q1352H appears to be strongly related to NTM lung disease susceptibility in the Korean population.Journal of Human Genetics advance online publication, 21 March 2013; doi:10.1038/jhg.2013.19.
    Journal of Human Genetics 03/2013; · 2.37 Impact Factor


1 Download
Available from