Article

The role of yeast DNA 3 '-phosphatase Tpp1 and Rad1/Rad10 endonuclease in processing spontaneous and induced base lesions

Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 09/2003; 278(33):31434-43. DOI: 10.1074/jbc.M304586200
Source: PubMed

ABSTRACT Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously isolated from a Caenorhabditis elegans cDNA library, designed for two-hybrid screening, a gene encoding the DNA repair enzyme APN-1 using cross-specie complementation analysis of the Saccharomyces cerevisiae apn1∆ apn2∆ tpp1∆ triple mutant deficient in the ability to repair several types of DNA lesions including apurinic/apyrimidinic (AP) sites. We subsequently purified the APN-1 from this yeast mutant and demonstrated that it possesses four distinct DNA repair activities. However, following the re-annotation of the C. elegans genome we discovered that the functionally active APN-1 encoded by the cDNA from the library might lack 108 amino acid residues from the N-terminal. We therefore synthesized the entire C. elegans apn-1 gene encoding the putative full-length APN-1 and created several N-terminal deletion mutants lacking either 63, 83 or 118 amino acid residues. The full-length APN-1, APN-1 (1-63Δ) and APN-1 (1-83Δ), but not APN-1 (1-118Δ) were stably expressed in the yeast triple mutant and cleaved the AP site substrate. However, only the full-length APN-1 rescued the yeast mutant from the genotoxicity caused by methyl methane sulfonate, a DNA damaging agent that creates AP sites in the genome. The full-length APN-1 was localized to the yeast nucleus, while APN-1 (1-63Δ) and APN-1 (1-83Δ) retained a cytoplasmic distribution. Our data suggest that the N-terminal region has no direct role in the DNA repair functions of APN-1 other than to target the protein to the nucleus and possibly to maintain its stability. Thus, the truncated APN-1, previously isolated from the two-hybrid library, ability to complement the yeast triple mutant depends on the engineered SV40 nuclear localization signal.
    Gene 10/2014; DOI:10.1016/j.gene.2014.10.016 · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human APE1 is an essential enzyme performing functions in DNA repair and transcription. It possesses four distinct repair activities acting on a variety of base and sugar derived DNA lesions. APE1 has seven cysteine residues and Cys65, and to a lesser extent Cys93 and Cys99, is uniquely involved in maintaining a subset of transcription factors in the reduced and active state. Four of the cysteines Cys93, 99, 208 and 310 of APE1 are located proximal to its active site residues Glu96, Asp210 and His309 involved in processing damaged DNA, raising the possibility that missense mutation of these cysteines could alter the enzyme DNA repair functions. An earlier report documented that serine substitution of the individual cysteine residues did not affect APE1 ability to cleave an abasic site oligonucleotide substrate in vitro, except for Cys99Ser, although any consequences of these variants in the repair of in vivo DNA lesions were not tested. Herein, we mutated all seven cysteines of APE1, either singly or in combination, to alanine and show that none of the resulting variants interfered with the enzyme DNA repair functions. Cross-specie complementation analysis reveals that these APE1 cysteine variants fully rescued the yeast DNA repair deficient strain YW778, lacking AP endonucleases and 3′-diesterases, from toxicities caused by DNA damaging agents. Moreover, the elevated spontaneous mutations arising in strain YW778 from the lack of the DNA repair activities were completely suppressed by the APE1 cysteine variants. These findings suggest that the cysteine residues of APE1 are unlikely to play a role in the DNA repair functions of the enzyme in vivo. We also examine other APE1 missense mutations and provide the first evidence that the variant Asp308Ala with normal AP endonuclease, but devoid of 3ʹ→5ʹ exonuclease, displays hypersensitivity to the anticancer drug bleomycin, and not to other agents, suggesting that it has a defect in processing unique DNA lesions. Molecular modeling reveals that Asp308Ala cannot make proper contact with Mg2+ and may alter the enzyme ability to cleave or disassociate from specific DNA lesions.
    DNA Repair 10/2014; 22:53-56. DOI:10.1016/j.dnarep.2014.07.010 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Base excision repair (BER) is one of the most commonly used DNA repair pathways involved in genome stability. X-family DNA polymerases (PolXs) play critical roles in BER, especially in filling single-nucleotide gaps. In addition to a polymerase core domain, bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain with phosphoesterase activity which is also required for BER. However, the role of the PHP domain of PolX in bacterial BER remains unresolved. We found that the PHP domain of Thermus thermophilus HB8 PolX (ttPolX) functions as two types of phosphoesterase in BER, including a 3'-phosphatase and an apurinic/apyrimidinic (AP) endonuclease. Experiments using T. thermophilus HB8 cell lysates revealed that the majority of the 3'-phosphatase and AP endonuclease activities are attributable to the another phosphoesterase in T. thermophilus HB8, endonuclease IV (ttEndoIV). However, ttPolX possesses significant 3'-phosphatase activity in ΔttendoIV cell lysate, indicating possible complementation. Our experiments also reveal that there are only two enzymes that display the 3'-phosphatase activity in the T. thermophilus HB8 cell, ttPolX and ttEndoIV. Furthermore, phenotypic analysis of ΔttpolX, ΔttendoIV, and ΔttpolX/ΔttendoIV using hydrogen peroxide and sodium nitrite supports the hypothesis that ttPolX functions as a backup for ttEndoIV in BER.
    DNA repair 10/2012; 11(11). DOI:10.1016/j.dnarep.2012.09.001 · 3.36 Impact Factor