Dynamical structure of center-of-pressure trajectories in patients recovering from stroke.

Faculty of Human Movement Sciences, Institute for Fundamental and Clinical Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
Experimental Brain Research (Impact Factor: 2.17). 10/2006; 174(2):256-69. DOI: 10.1007/s00221-006-0441-7
Source: PubMed

ABSTRACT In a recent study, De Haart et al. (Arch Phys Med Rehabil 85:886-895, 2004) investigated the recovery of balance in stroke patients using traditional analyses of center-of-pressure (COP) trajectories to assess the effects of health status, rehabilitation, and task conditions like standing with eyes open or closed and standing while performing a cognitive dual task. To unravel the underlying control processes, we reanalyzed these data in terms of stochastic dynamics using more advanced analyses. Dimensionality, local stability, regularity, and scaling behavior of COP trajectories were determined and compared with shuffled and phase-randomized surrogate data. The presence of long-range correlations discarded the possibility that the COP trajectories were purely random. Compared to the healthy controls, the COP trajectories of the stroke patients were characterized by increased dimensionality and instability, but greater regularity in the frontal plane. These findings were taken to imply that the stroke patients actively (i.e., cognitively) coped with the stroke-induced impairment of posture, as reflected in the increased regularity and decreased local stability, by recruiting additional control processes (i.e., more degrees of freedom) and/or by tightening the present control structure while releasing non-essential degrees of freedom from postural control. In the course of rehabilitation, dimensionality stayed fairly constant, whereas local stability increased and regularity decreased. The progressively less regular COP trajectories were interpreted to indicate a reduction of cognitive involvement in postural control as recovery from stroke progressed. Consistent with this interpretation, the dual task condition resulted in less regular COP trajectories of greater dimensionality, reflecting a task-related decrease of active, cognitive contributions to postural control. In comparison with conventional posturography, our results show a clear surplus value of dynamical measures in studying postural control.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During walking on an instrumented treadmill with an embedded force platform or grid of pressure sensors, center-of-pressure (COP) trajectories exhibit a characteristic butterfly-like shape, reflecting the medio-lateral and anterior-posterior weight shifts associated with alternating steps. We define "gaitography" as the analysis of such COP trajectories during walking (the "gaitograms"). It is currently unknown, however, if gaitography can be employed to characterize pathological gait, such as lateralized gait impairments. We therefore registered gaitograms for a heterogeneous sample of persons with a trans-femoral and trans-tibial amputation during treadmill walking at a self-selected comfortable speed. We found that gaitograms directly visualize between-person differences in prosthetic gait in terms of step width and the relative duration of prosthetic and non-prosthetic single-support stance phases. We further demonstrated that one should not only focus on the gaitogram's shape but also on the time evolution along that shape, given that the COP evolves much slower in the single-support phase than in the double-support phase. Finally, commonly used temporal and spatial prosthetic gait characteristics were derived, revealing both individual and systematic differences in prosthetic and non-prosthetic step lengths, step times, swing times, and double-support durations. Because gaitograms can be rapidly collected in an unobtrusive and markerless manner over multiple gait cycles without constraining foot placement, clinical application of gaitography seems both expedient and appealing. Studies examining the repeatability of gaitograms and evaluating gaitography-based gait characteristics against a gold standard with known validity and reliability are required before gaitography can be clinically applied.
    Medical & Biological Engineering & Computing 09/2014; · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP) or center-of-mass (COM) fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC) is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( = limits of the region of feasible COP or COM displacement) and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC), a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a predictive model of postural instability during upright stance.
    PLoS ONE 10/2014; 9(10):e108905. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with non-specific low back pain (LBP) may use postural control strategies that differ from healthy subjects. To study these possible differences, we measured the amount and structure of postural sway, and the response to muscle vibration in a working cohort of 215 subjects. Subjects were standing on a force plate in bipedal stance. In the first trial the eyes were open, no perturbation applied. In the following 6 trials, vision was occluded and subjects stood under various conditions of vibration/no vibration of the lumbar spine or m. Triceps Surae (TSM) on firm surface and on foam surface. We performed a factor analysis to reduce the large amount of variables that are available to quantify all effects. Subjects with LBP showed the same amount of sway as subjects without LBP, but the structure of their sway pattern was less regular with higher frequency content. Subjects with LBP also showed a smaller response to TSM vibration, and a slower balance recovery after cessation of vibration when standing on a solid surface. There was a weak but significant association between smaller responses to TSM vibration and an irregular, high frequency sway pattern, independent from LBP. A model for control of postural sway is proposed. This model suggests that subjects with LBP use more co-contraction and less cognitive control, to maintain a standing balance when compared to subjects without LBP. In addition, a reduced weighting of proprioceptive signals in subjects with LBP is suggested as an explanation for the findings in this study. Copyright © 2014. Published by Elsevier B.V.
    Human Movement Science 02/2015; 39:109-20. · 2.03 Impact Factor


Available from
Jun 4, 2014